
Copyright	©	2018, Oracle	nd/or	its	affiliates.	All	rights	reserved.		|

Oracle	Database:
Processing	Engine	or	Persistence	Layer?

John	Clarke
Software	Development	Director
Real-World	Performance
Oracle	Server	Technologies



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Safe	Harbor	Statement
The	following	is	intended	to	outline	our	general	product	direction.	It	is	intended	for	
information	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	functionality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	timing	of	any	features	or	
functionality	described	for	Oracle’s	products	remains	at	the	sole	discretion	of	Oracle.



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Bridging	the	Divide	from	Today’s	Performance	to	What	is	Possible	
What	is	Real-World	Performance	in	2018?



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Real-World	Performance	2018

• Part	of	the	Database	Development	Organization
• Global	Team	located	in	USA,	Europe,	Asia
• 350+	combined	years	of	Oracle	database	experience	
• Innovate	to	achieve	exceptional	Database	Performance	
• Our	methods:

• Use	the	product	as	it	was	designed	to	be	used
• Numerical	and	logical	debugging	techniques
• Educate	others	about	the	best	performance	methods	and	techniques
• Avoid	and	eliminate	“tuning”	by	hacking/guessing/luck

Who	We	Are



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Are	you	happy	with	incremental	performance	
improvements?

Do	you	have	the	ability	to	choose your	performance?

Do	you	move	data	to	processing	or	processing	to	data?



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Acknowledgements

• Toon	Koppelaars,	RWP
– Performed	much	of	the	research	&	authored	much	of	the	content
– Leads	#SmartDB	charge	from	Real-World	Performance

• Bryn	Llewellyn,	PLSQL	Product	Manager
• Many	other	RWP	engineers	over	the	years
• Oracle’s	Fusion	Applications/SaaS	teams,	designs,	and	solutions,	which	
motivated	us	to	do	the	research



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Introduction
Introduction

Layered	Architecture:	History,	Landscape,	and	Issues

Demos	and	Technical	Stuff

Big	Picture

Concluding	Thoughts

1

2

3

4

5



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Application	Architecture

§ If	you	had	to	validate	a	single	row	on	a	web	form,	how	would	you	
design	your	app?

§ What	if	you	had	to	validate	millions	of	rows	that	arrived	as	a	batch?

§ Do	you	do	this?
Design(Many	rows)	=	Design(One	row)	*	#Rows

How	Do	You	Design	apps?



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Some	Context
• The	database	->	a	processing	engine,	or	persistence	layer?
• OLTP:	transactional	enterprise	applications
– Data	store	as	foundation,	 for	which	we	use	Oracle’s	RDBMS
–Much/complex	CRUD	functionality	on	top
– User	interfaces,	workflows,	batch	jobs,	reports,	API's	to	other	applications
– Potentially	many	users

• OLTP	techniques	for	batch	programming
• Not:	data-warehouse,	business-intelligence,	big-data
– But	CSconcepts applicable



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Transactional	Enterprise	Applications

• A	big	component	of	these	applications	is	“Business	Logic”

• What	is	“Business	Logic”?



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Transactional	Enterprise	Applications

• Conceptually	three	tiers

– Functionality	exposed	via	interfaces
• GUI's	for	human	interaction
• REST,	Soap	or	otherwise,	for	software	interaction

– Business	logic

– Data	store,	relational	database

User
Interfaces

Software
Interfaces

Business
Logic

Table
Data	Store



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Wiki

Business
Logic

SQL
SQLSQL

SQL
SQL

SQL

Conditional	“If-then-else-loop”	code	with	
embedded	data	access	statements	in	it

The	way	the	business	requires	this	to	be	done



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

We	See	Two	Mutually	Distinct	Approaches
RDBMS=	Persistence	Layer
“Layered	Architecture”

RDBMS	=	Processing	Engine
“#SmartDB”

SQL	+/- PL/SQL	=	“If-then-
else-loop”

language	used

Something	else	=
“If-then-else-loop”
language	used



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

A	quick	poll
• In	your	typical	DB	application,	what	would	be	the	distribution	of	CPU	work	
between	BL	and	SQL?

20% 50% 80%

80% 50% 20%



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Ever	Seen	This?

Constitutes	the	byte-stream
that	is	your	executable	program

that	gets	run	by	the	CPU
Machine	code	mnemonics

Program	
Counter

Clock-ticks	required	
for	instruction

Conditional	
branching/looping

Data	
manipulation



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Why	Did	I	Show	That?

• Re-introduction	of	term	“if-then-else-loop	language”
• Start	thinking	about	how	computers	accomplish	the	tasks	they’re	asked	to	
perform	…



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

“If-then-else-loop”	Languages
• Every	compiled	program	translates	to	machine	code
which	always	is	sequence	of:
–Moving	data	between	main	memory	and	on-core	registers
– Changing	values	in	these	registers
– Computing	new	values	using	these	registers
– Comparing	values	in	registers	with	literals	and/or	other	registers
– Conditional	(or	unconditional)	branching

• All	program	languages	(PL/SQL,	Java,	JavaScript,	…)	are
just	higher	levels	of	abstraction	to	this
=	if-then-else-loop	 languages



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Example	Business	Logic:	Code	With	Embedded	SQL
Single-row	data	access

Business	logic

Business	
logic

Row	fetching	(data	access)

Business	logic

Row-by-row	updating	 (data	access)

“if-then-else-loop”	code

Primitive	data	access
(single	 table,	row-by-row)



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

For	now,	we’re	going	 to	
assume	this	is	how	it	appears

Example	Business	Logic:	All	in	SQL

Point	to	be	made	à Business	logic	can	appear:
– As	code-lines	in	some	programming	language	that	issues	simple	(poor)	SQL
– As	part	of	(rich)	SQL
– Both…

Set-based	data	processing,	 aka	“rich”SQL
Multiple	 tables	referenced
Multiple	 rows	processed

You	declare	what	needs	to	
be	done.

SQL	exec	engine	&	
optimizer	 translate	this	into	
code	equivalent	with	code	

on	previous	page



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Layered	Architecture:	History,	Landscape,	and	Issues

Introduction

Layered	Architecture:	History,	Landscape,	and	Issues

Demos	and	Technical	Stuff

Big	Picture

Concluding	Thoughts

1

2

3

4

5



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Oracle	v4,	v5,	v6	Database	Documentation



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Oracle7,	8i:	Database	Documentation



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

History	Observation:	End	of	"SmartDB"	Era

1990 1995 2000 2005 20152010

Oracle7	

Reign	of	"SmartDB"	era
DB	=	processing	engine

Rise	of	”Layered	Arch"	era
DB	=	persistence	layer

Features	available in	DB

1985

DB-features	used by	application
developers

Advent	of	 J2EE
and	MVC	frameworks	

Collapse	of	JEE	

Advent	of	 JavaScript	
frameworks	

Fe
at
ur
e	
ric
hn
es
s



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Where	Were	We	at	End	of	1990's?
• Applications	capitalized	on	database	being	a	processing	engine

Thin	client:
UI-only

Tables	typically	never	accessed	directly

Stored	PL/SQL	modules	and	views Business	logic	done	with	PL/SQL	and	rich	SQL

RDBMS Properly	designed	 relational	database	schema
decorated	with	declarative	constraints

Calls	to	“smart	data	services”



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

What	Has	Happened	Since?
• Database	to	only	fulfill	persistence	layer	role	(bit	bucket)

Direct	access	to	all	tables

JDBC
Persistence-fw
Model-fw
Business-fw
Control-fw
UI/View-fw

Generated/used	 tables	(to	persist	object	hierarchy)
often	without	constraints

Model-View-Controller	 (MVC)
framework	era	during

1st decade	of	new	millennium

All	business	 logic	in	
application	server	based	
on	hierarchical/network	

domain	model
Poor	SQL issued	 to	DB



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

What	is	a	Layered	Software	Architecture?

§ Relatively	common	architecture

§ "n-Tier"	architecture

§ Standard	for	most	Java	EE	applications

§ Widely	used	by	architects,	designers,	developers



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

What	is	a	Layered	Software	Architecture?

§ Organized	into	horizontal	layers

§ Each	layer	performs	specific	role

§ Most	consist	of	4-5	major	layers

§ Layers	generally	include	
presentation,	business	logic,	model,	
persistence,	and	database



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Why	a	Layered	Software	Architecture?
§ Layers	are	typically	closed	and	expose	

API's	for	invocation

§ Each	layer	must	go	through	layer	API's	
directly	below	it;	enforces	isolation

§ Isolation	enables	separation	of	concerns	
and	layer	independence

§ Makes	it	easy	to	re-use,	build,	and	
(theoretically)	test and	maintain	
application



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Presentation	Layer

Business	Layer

Model	Layer

Persistence	Layer

Database	Layer

Implications	of	a	Layered	Software	Architecture
§ All	application	logic	built	in	layers	

outside	database

§ SQL	is	hidden	for/from	developers

§ Bottom	layers	translate	GUI	
structures	to	relational	data,	often	
generating	row-by-row	SQL	
statements

§ Database	=	(dumb)	table	store	or	"bit	
bucket",	not	a	processing	engine

SQL



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Important	Points	to	Make	(1/2)
• In	layered	MVC	approach	SQL	is	invisible
• Almost	always	SQL	is	hidden	from	developers
–Object	oriented	domain	models	are	used
– Developers	invoke	methods	on	objects
–Objects	map	to	tables	via	persistence	framework	(ORM)
• Object	Relational	Mapping tools

• Common	for Modern	developers to know Java,	not SQL

• ORM's	produce	single-row	(or	column),	single-table	SQL
– In	contrast	to	rich-SQL Direct	access	to	all	tables

JDBC
Persistence-fw
Model-fw
Business-fw
Control-fw
UI/view-fw



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Important	Points	to	Make	(2/2)
• Doing	everything	with	single-row,	single-table	SQL
results	in	"chatty"	applications
– Especially	for	batch	processes
– Think:	50K-200K	DB-calls/second

• In	‘90s	we	referred	to	this	as	"roundtrips"	
– Roundtrips	were	bad	(for	performance)	then,	and	still	are	today
• Bad	then	because	of	network-latency	(now:	because	of	CPU	required)

–Oracle7,	with	stored	PL/SQL,	helped	us	mitigate	this	
– By	moving	business	logic	into	database	

Lots	and	lots	of	calls	going	
back	and	forth

I’ll	come	back	to	this	
shortly



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

“Chatty”	Applications
• Moving	business	logic	into	stored	PL/SQL,	reduces	#roundtrips	

Hire_Employee
Business	Logic

Table
Data	Store

UI

SQL SQL SQL SQL SQL

Hire_Employee
Business	Logic

Table
Data	Store

UI

SQL SQL SQL SQL SQL

Five	roundtrips	 between	
processes/machines

Five	SQL	calls	
within	context	of	
single	process

One	roundtrip	between	
processes/machines

Layered SmartDB	



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

New	Paradigm	Shift	Happening:	Java	à JavaScript
• Server-side Java	MVC-frameworks	approach	has	been	ubiquitous

• New	architecture	is	arising:
– Browser-side JavaScript	(V+C)
– Server-side JavaScript	(M)
– REST	to	glue	it	together

– Database	still as	persistence	layer

• In	a	sense,	this	is	just	client/server	all	over	again
– Responsive	UI	running	on	client:	browser	has	Control
– Smart	data	services	running	on	server	(JVM)

Direct	access	to	all	tables

JDBC
Persistence-fw
Model-fw
Business-fw
Control-fw
UI/View-fwREST

JVM



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

We’ve	Now	Truly	Gone	Full-Circle…

Javascript	/	Ajax	/	Dhtml
Partial	page	refresh
V+C	back	into	browser
“Client/Server	2.0”...1990Stateless

Stateful

Character Graphical

2000-2010

1995-2000

No	more	
responsiveness

1990-1995

ß Client-server	era	à



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Real	World	Example

There	are	a	number	of	layered	development	frameworks	available

Development	Framework	Decisions



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Layered	Architecture	with	Hibernate

Presentation	Layer

Business	Layer

Model	Layer

Persistence	Layer

Database	Layer

Table/DML	classes Validation

Hibernate	DAO's	
Data	Access	Objects

Business	entity	classes
Usable	in	presentation	layer

UI

TABLES



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Layered	Architecture	with	Oracle	ADF

Presentation	Layer

Business	Layer

Model	Layer

Persistence	Layer

Database	Layer

ADF-BC View	Objects	(VO's)

ADF-BC Entity	Objects	(EO's)

ADF-BC	 Application	Module	(AM)

UI

TABLES



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Issues	with	Layered	Architectures

1. Stability	of	technology	stack
2. Development	and	maintenance	cost
3. Performance	and	scalability



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Reminder…

This	is	the	“stable”	factor”	over	the	years	- everything	
else	on	top	of	it,	has	not	been…



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Stability	of	Technology	Stack	– Java	MVC
• Java	frameworks	came	and	went	much	faster	than	did	our	applications

BC4J	/	ADF-BC

1
2

MVC	used	here

Totally	different	
from	MVC	used	

here
PL/SQL	and	SQL

used	here

Is	still
PL/SQL	and	SQL

used	here



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Stability	of	Technology	Stack	– JavaScript	MVC

MVC	used	here

Is	totally	
different	 from	
MVC	used	here

Rise	of	JavaScript
everywhere

Technology	volatility	
currently	worse	in	emerging	

new	world

JavaScript
used	here

Is	totally	different	
from	JavaScript	

used	here

2020



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Issue	1:	Stability	of	Technology	Stack
• If	layers	in	your	chosen	technology	stacks	are	volatile…
Then	you	ought	to	use	them	"thinly"
– I.e.	do	not	do	business	logic	in	them
– Instead,	push	business	logic	further	down	into	code-stack	where	stable	layers	exist
Why?	Enables	agility	à it’ll	be	easier/cheaper	to	deal	with	the	volatility

• But	nobody	has	been	doing	that…	
We	have	been	creating	cemented	maintenance	nightmares	in	past	15	years

• Prediction:	
PL/SQL	and	SQL	will	still	be	here	10	years	from	now	when	JavaScript's	reign	
ends



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Issue	2:	Development	and	Maintenance	Costs
• Issue	is	multifaceted

– Layered	technology	stacks	are	complex

–Wheels	are	reinvented

– Is	OO	a	good	fit	for	business	logic	of	database	applications?



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hibernate…
• “I	had	to	learn Hibernate architecture,	configuration,	logging,	naming	
strategies,	tuplizers,	entity	name	resolvers,	enhanced	identifier	generators,	
identifier	generator	optimization,	union-subclasses,	XDoclet markup,	
bidirectional	associations	with	indexed	collections,	ternary	associations,	
idbag,	mixing	implicit	polymorphism	with	other	inheritance	mappings,	
replicating	object	between	two	different	datastores,	detached	objects	and	
automatic	versioning,	connection	release	modes,	stateless	session	
interface,	taxonomy	of	collection	persistence,	cache	levels,	lazy	or	eager	
fetching and	many,	many	more.”

https://www.toptal.com/java/how-hibernate-ruined-my-career



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

MVC	Technology	Stacks	Are	Complex
• Witnessed	many	projects:	both	#SmartDB	and	Layered/MVC
• Disproportional	large	amount	of	time	spent	on	getting
frameworks	known	and	then	set	up	and	work	all	together
Many	discussions	on	"how	to	do	this?",	"how	to	do	that?"

• (Counterargument?):	Modern	developers	taught	to	”plug”
• Much	time	is	spent	on	"plumbing"	code
– Code	that	doesn’t	add	value	to	the	business

• SmartDB	developers	proportionally	spend	more	time	on	what
end-users	care	for,	on	what	is	unique	to	application:	its	business	logic

JDBC
Persistence-fw
Model-fw
Business-fw
Control-fw

UI-fw



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Wheels	Are	Reinvented
• Both	by	frameworks	as	well	as	by	developers

– Transaction	management,	cache	synchronization,	read-consistency,	security,	…

–Do-it-yourself:	joining,	set-operations,	grouping,	sorting,	aggregation,	…

• All	available	out-of-the-box	inside	database	or	declaratively	via	SQL



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Is	Object	Orientation	(OO)	a	Good	Fit?
• Example	use-case:	funds	transfer
Inputs:	source-account,	target-account,	transfer-amount
– Perform	validations	on	input	values
– Apply	various	"business	rules"
• Lookup	customer-type	and	apply	type	specific	policies
• Lookup	account-type	and	apply	type	specific	policies
• Validate	enough	funds	available	for	transfer

– Perform/transact	funds	transfer
– Log	transaction	including	policies	applied

• In	essence	nothing	OO-ish about	business	logic
Natural	fit	=	implementation	via	some	if-then-else-loop	language
Preferably	one	that	does	SQL	really	well:	think	PL/SQL

Sequential	
procedural	code	
with	embedded	
queries	and	DML



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Issue	3:	Performance	and	Scalability
• "Database	is	always	bottleneck",	so	here's	the	Layered/ORM/MVC	promise:

– Get	data	from	DB	once	into	mid-tier	caches
– Then	re-use	many	times in	business	logic	running	in	horizontally	scalable	mid-tier	servers
–Write	data	back	to	DB	once

• Always	major	argument	to	reject	SmartDB	approach

“SmartDB	approach	(running	BL	in	DB)	will	saturate	database	real	quick“
“It	won’t	scale”



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance	and	Scalability
• However	in	real-world:
– Hardly	ever	see	these	cached	data	"re-uses“	à these	applications	are	*always*	chatty
– Data	read	+	manipulated	once,	then	written	back,	and	not	used	again	while	in	cache
– Where's	the	advantage	then?

• Also:
– Instantiating	objects	for	rows,	takes	a	lot	of	memory	and	CPU

Data	is	always	cached	in	multiple	layers:	JDBC,	ORM,	model	framework,	Business	Logic	modules
– Cached	data	volumes	become	so	big	that	caches	need	to	flush	data	pre-maturely

• Also,	part	II:
– Where	is	my	time	being	spent?		More	on	this	later	…

• Btw:	data	is	already	cached	very	efficiently	at	database	tier…



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Demos	and	Technical	Stuff

Introduction

Layered	Architecture:	History,	Landscape,	and	Issues

Demos	and	Technical	Stuff

Big	Picture

Concluding	Thoughts

1

2

3

4

5



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Summary	Here
• Original	story	at	Oracle	Learning	Library	channel	on	youtube
https://www.youtube.com/watch?v=8jiJDflpw4Y
Search:	"toon koppelaars"

Figure	out



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Our	(First)	Experiment
• Event-processing	module	based	on	real-world	example
– Built	using	SmartDB	approach:	PL/SQL	stored	procedure	with	embedded	SQL
– Built	using layered approach:	Java	with	embedded	SQL	on	top	of	(thin)	JDBC
Both	built	using	row-by-row	simple/poor	SQL	pattern

• Straight-forward	business	logic:	if-then-else,	looping

• With	typical	load	profile	that	we	see	all	the	time:
–Many	single-row	SQL	statements,	mix	of	reads	and	writes
– Index	maintenance

Both	runs	execute	
the	same

5M	SQL-statements



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

SQL	engine	

Business	logic	in	
PL/SQL	with

embedded	SQL
SQL

Java/JDBC	versus	PL/SQL

Business	logic	
in	Java	with	

embedded	SQL

SQL

JVM

Invoke	method	on	
main	class

Invoke	packaged
procedure

SQL	engine	

No	network
Same	box	à IPC



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Java/JDBC	versus	PL/SQL

Business	logic	
in	Java	with	

embedded	SQL

SQL

JVM

SQL	engine	

Business	logic	in	
PL/SQL	with

embedded	SQL
SQL

SQL	engine	

Elapsed-time:	11	minutes Elapsed-time:	3	minutes	30	seconds

217 CPU	seconds

437 DB-CPU	seconds

204 DB-CPU	seconds



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Real	World	Example

• VAT	Clearing/Matching
– Company	A	sells	to	Company	B
– Company	B	buys	from	Company	A
– Each	report	VAT	on	purchased	goods	and	sold	goods;	one	business	can	claim	the	VAT

• Buy	and	Sell	records	must	be	matched
• Batches	received	daily	in	sets	of	2:	buy	records	and	sell	records
• Possible	exceptions:
– Duplicates
–Out	of	sync	records;	i.e.,	Buy	and	Sell	records	in	different	batches

Daily	Batch	Program	for	Tax	Matching:	Briefing



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Real	World	Example
Involved	Objects

PREMATCH_BUY
table

PREMATCH_SELL
table

DUPLICATE_SELL
table

DUPLICATE_BUY
table

Buy	
transactions

file

Sell
transactions

file

MATCHED
table



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Real	World	Example
Data	Flow

PREMATCH_BUY
table

PREMATCH_SELL
table

DUPLICATE_SELL
table

DUPLICATE_BUY
table

Buy	
transactions

file

Sell
transactions

file

MATCHED
table

Load	rows	
daily

Load	rows	
daily



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Real	World	Example
Data	Flow

PREMATCH_BUY
table

PREMATCH_SELL
table

DUPLICATE_SELL
table

DUPLICATE_BUY
table

Buy	
transactions

file

Sell
transactions

file

MATCHED
table

Match	and	
insert	rows
Match	and	
insert	rows



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Real	World	Example
Data	Flow

PREMATCH_BUY
table

PREMATCH_SELL
table

DUPLICATE_SELL
table

DUPLICATE_BUY
table

Buy	
transactions

file

Sell
transactions

file

MATCHED
table

Remove	
matched	rows.
Unmatched	
rows	remain	
for	next	day

Remove	
matched	rows.
Unmatched	
rows	remain	
for	next	day



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

MATCHED
table

During	
load	verify	

for	
duplicates

Real	World	Example
Additional	Business	Logic:	Discard	Duplicates

PREMATCH_BUY
table

PREMATCH_SELL
table

DUPLICATE_SELL
table

DUPLICATE_BUY
table

Buy	
transactions

file

Sell
transactions

file

During	 load	verify	
for	duplicates

During	 load	verify	
for	duplicates

Before	loading	a	
row	verify	 for	
duplicatesPark	duplicate	

rows	in	separate	
table

Park	duplicate	
rows	in	separate	

table



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Real	World	Example

Does	a	bit	of	everything:
• Inserts	into	five	tables
• Performs	indexed	lookups	for	de-duplication	and	matching
• Deletes	from	PREMATCH	tables
• Index	maintenance
• Some	business	logic	(if-then-else)	to	de-dupe	and	match

• We	already	have	a	Web	UI	that	does	VAT	matching	for	single	buy/sell	record
• We'll	reuse	its	business/model/persistence	 layers

Load	Profile



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Tax	Demo	– Run	#1

Config Threads File	1	
Seconds

File	2	
Seconds

File	3	
Seconds

File	4	
Seconds

File	5	
Seconds

Total
Seconds

ADF 1 1,674 2,081 1,561 1,111 2,131 8,558

ADF	 4 460 562 425 302 579 2,328

ADF	 16 158 192 145 109 198 802

PL/SQL 1 337 421 315 224 430 1,727

DEMO



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Tax	Demo	– Run	#1

PL/SQL	1	
Thread

ADF	1	Thread

ADF	job	spends	 less	
time	in	the	database

DEMO



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Tax	Demo	– Run	#1	(Continued)

ADF	16	
threads

With	16	threads,	our	
ADF	job	is	only	active	in	

the	database	5.7	
seconds	per	second

DEMO



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Why	did	we	show	PL/SQL	again?

§ Our	layered	(ADF)	application	forced	us	down	a	row-by-row	path

§ We	can	easily	do	row-by-row	processing	in	PL/SQL



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Tax	Demo	– Run	#1

Will	SQL	tuning	help?

DEMO



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Tax	Demo	– Run	#1

This	is	what	row-by-
row	processing	 looks	

like

DEMO



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Layered	Arch’s	Promise?	è Opposite	Effect

• Runtime	longer à Layered	approach	performs	worse
• DB	resource-usage	more		 à Layered	approach		scales	worse
• Layered	approach	uses	more	CPU
• Seems	“performance/scalability”	argument	is	wrong?



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Tax	Demo	– Run	#2

Config Threads Array	Size File	1	
Seconds

File	2	
Seconds

File	3	
Seconds

File	4	
Seconds

File	5	
Seconds

Total	
Seconds

ADF 16 1 158 192 145 109 198 802

PL/SQL 1 256 163 210 115 113 210 811

PL/SQL 16 1 37 43 31 23 44 178

PL/SQL 16 256 26 31 24 17 33 131

DEMO



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

ADF	vs.	PL/SQL	CPU	Efficiency

ADF	(16	Threads)

PL/SQL	(16	Threads)

The	ADF	program	uses	
more	CPU

DEMO



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Exact	Same	Row-by-row	SQL:	Why	The	Huge	Difference?
• "The	Living	Room"	analogy
• With	SmartDB:
– PL/SQL	is	already	in	living	room,	which	is	where	SQL-engine	lives

• All	other	languages	need	to	enter	from	“outside”
– Go	through	front	door,	traverse	hall,	enter	living	room

And	apparently	this	is	*not*	for	free	if	you	execute	lots	of	DB	calls



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Oracle

LinuxThe	Living	Room
• SQL	engine

SQL	engine



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

The	Living	Room
• SQL	engine
– Accessible	via	OPI	layer
–Oracle	Program	Interface

• PL/SQL	directly	calls	OPI

OPI
SQL	engine

PL/SQL	engine
Embedded	SQL

Oracle

Linux



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Device-driver/Ethernet/IP/TCP-UDP/Sockets

Two-task

SQL*Net

TNS

Prot.	adapter

Oracle
Linux

System	library

SQL
The	Living	Room
• Outside	SQL	route:
–OS	network/ipc layers
• Front	door,	doormat

– Net/TNS/TT	layers
• Hallway

–OPI

èMore	code	path:
For	row-by-row	SQL,
you	notice	this	overhead

OPI
SQL	engine

PL/SQL	engine
Embedded	SQL



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

ADF	vs.	PL/SQL	CPU	Efficiency
Why	is	Row-by-Row	PL/SQL	Using	Less	CPU?

Device-driver/Ethernet/IP/TCP-UDP/Sockets

OPI OPI

Two-task

SQL*Net

TNS

Prot.	adapter

SQL	engine

PLSQL	engine

Oracle
Linux

System	library

SQL

Embedded	SQL

Sockets/TCP-UDP/IP/Ethernet/Device-driver

Linux
JVM

Persistency	layers

JDBC	layers

System	library

Domain	model	layers

Application	code
Setters	and	getters

Transaction	layers



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Researched	This	Through	FlameGraphs

• Flamegraphs visualize	proportionally	where,	in	the	code,	a	program	spends	
its	time



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Generating	a	FlameGraph
• Is	really	easy
• All	you	need	is	two	perl scripts,	which	you	can	download	from
– https://github.com/brendangregg/FlameGraph



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

PL/SQL	vs.	ADF:	CPU	Impact
ADF	Oracle	call	stack	with	Flame	Graph	

Shipping	 data	in	and	
out	of	the	database;	
outside	OPI/SQL	

Engine

Application	SQL	(inside	SQL	Engine/OPI)

OS	network,	 IPC,	
Net/TNS/TTS

Deletes Inserts
Executes	&	
fetches

State	initialization,	
context	prep,	find	

cursor,	unmap cursor

Recursive	
calls



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

PL/SQL	vs.	ADF:	CPU	Impact
PL/SQL	Oracle	call	stack	with	Flame	Graph	

PL/SQL	Engine

Application	SQL	(inside	SQL	Engine/OPI)

Deletes Inserts

Executes	&	
fetches

State	initialization,	
context	prep,	find	

cursor,	unmap cursor
Recursive	

calls



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

PL/SQL	vs.	ADF:	CPU	Impact

opiexe

opiexe

Same	code	– why	does	ADF	use	more	CPU?



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Generating	a	FlameGraph

Process	that	we	want	to	
“Flamegraph”

Eg.	Oracle	dedicated	server

pid=	12345

main>p9
main>p1>p2
main>p1
main>p1>p2>p3
main>p1>p2
main>p1>p2>p3
main>p1>p2
main>p1>p2>p3
main>p1>p2
main>p9
main>p9>p4
…

Sample	callstack
Write	to	perf.data

main>p1
main>p1>p2
main>p1>p2
main>p1>p2
main>p1>p2
main>p1>p2>p3
main>p1>p2>p3
main>p1>p2>p3
main>p9
main>p9
main>p9>p4
…

Sort

Perl-1

perf record	-g	-F	99	--pid 12345

Perf:	Linux	process	profiler

attach

perf.data file main
p1 p9

p4p2
p3

Perl-2

Generate	svg-file View	in	browser



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

How	to	Read	a	Flamegraph

• More	info:	https://github.com/brendangregg/FlameGraph

main
p1 p9

p4p2
p3

Width	of	top-surface	represents	where	time	is	spent

Width	represents	#	of	samples	=	cpu-time	spent



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Reason	#1
• With layered architecture approach,	every database	call/SQL-statement	
incurs a	RDBMS-entry	taks

• In	#SmartDB	there	is	no	entry	required	for	SQL,	it’s	already	in	there

Research	showed:	40-50%	addititional	CPU-cycles	per	SQL-statement
Remember,	we’re	dealing	with	row-by-row	SQL	here

• But	that’s	not	the	observed	>2X	increase	in	DB-Time...



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Reason	#2:	CPU	Efficiency
• Modern	CPU	cores	are	complex	factories	(just	like	RDBMS)
– As	a	thread,	it’s	best	to	stay	in	factory	as	long	as	possible
– Getting	off	and	back	on	CPU	is	very	expensive	in	terms	of	required	clock cycles
– Process	context-switching	is	most	expensive	CPU	operation

• SmartDB	approach	has	fewer process context-switches	– stays on	the CPU
• Layered approach	deschedulesmany more	millions of	times per	SQL	statement,	
causing CPU	to	have	to	execute	additional	micro-operations

• What	this	means	is:	Layered arch.	approaches	usemore DB	CPU
• What this means	is:	You use less CPU	if you can “stay on	it”	to get	your BL	done

Researched	through	
CPU	profiling



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

363395.733099 cpu-clock
363333.886369 task-clock

1,054,507,284,440 cycles
497,951,316,616 instructions
35,271,327,010 bus-cycles

555,928 faults
6,782 cpu-migrations

29,011,223,921 cache-references
262,587,106 cache-misses

4,496,968 context-switches
97,003,543,743 branches
3,132,424,179 branch-misses

954.553486931 seconds time elapsed

163360.334736 cpu-clock
163360.401705 task-clock

485,147,753,205 cycles
224,676,903,673 instructions
16,182,224,526 bus-cycles

749,871 faults
1,802 cpu-migrations

13,863,704,572 cache-references
149,387,122 cache-misses

115,832 context-switches
42,229,605,073 branches

821,626,951 branch-misses

165.182311836 seconds time elapsed
PL/SQL

PL/SQL	vs.	ADF:	CPU	Impact

ADF

200%	more	
instructions

Requiring	100%	
more	CPU

Caused	by	more	branch	&	
cache	misses



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Combined:	Layered	approach		Puts	>2X	Load	On	RDBMS

• Reason	#1:	Overhead	in	Oracle	kernel	per	SQL	statement
• Reason	#2:	Overhead	at	CPU-level	due	to stack	traversal,	scheduling,	
context-switching,	etc.



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

One	More	Point	to	Make…

Apart	from	spending	time	executing SQL	…

• We’re	also	spending	time	executing	the	if-then-else-loop	language	from	
which	SQL	gets	submitted
– In	Layered approach	we’re	spending	time	in	Java	doing	business	logic
– In	#SmartDB	approach	we’re	spending	time	in	PL/SQL	doing	business	logic



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Required	CPU	For	Getting	the	Business	Logic	Done

Business	logic	
in	Java	with	

embedded	SQL

SQL

JVM

SQL	engine	

Business	logic	in	
PL/SQL	with

embedded	SQL

SQL

SQL	engine	
437 DB-CPU	seconds

204 DB-CPU	seconds

217 CPU	seconds

184 DB-CPU	seconds

20 DB-CPU	seconds



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

10X!
• Researched	through	FlameGraphing	the	JVM
• Analogy:	not	only	do	you	have	to	come	into	(DB)	house	from	outside
You	also	first	have	to	exit	your	(JVM)	house	for	every	SQL	statement

• 90%	of	time	spent	in	JVM	is	in:
1. Executing	JDBC	code-layers
2. Getting	in	and	out	of	JVM
3. Other	JVM-specifics	(JIT	compilation,	Garbage	Collection,	...)

All	three	simply	do	
not	exist	in	

SmartDB	approach



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

FlameGraph of	JVM

Shipping	 data
in	and	out
1)	Shipping	

data in	and	out

Our	"program"
2)	Most	of	it	is	JDBC,	ie.	getting	

SQL	ready	to	be	shipped

3)	Rest	is	"JVM	housekeeping"	

217	CPU	seconds
Our	business	 logic	is	
simply	not	visible



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

In	Summary:	Row-by-Row	Layered	vs.	Row-by-Row	SmartDB
• If you	have	your	SQL	generated	by	persistence/ORM	frameworks,
• Then you’ll	get	chatty,	row-by-row,	applications
• Which	then	results	in	hugely	inefficient	use	of	resources
– Both	at	DB-server	(2X)	and JVM	side	(10X)

• The	more	chatty	your	application	is,	the	worse	this	will	be
– Also,	the	greater	the	latency,	the	worse	this	will	be
– Also,	the	busier	your	DB	server	or	app	server,	the	worse	this	will	be

• Roundtrips
– Cause	massive	increase	in	required	CPU	power
– Nowadays	this	is	probably	worse	than	the	“time	spent	on	network”



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

What	Does	the	PL/SQL	Array	Interface	Do	for	You?
Array	Size	1 Array	Size	256

Array	processing	uses	
less	CPU

DEMO



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Tax	Demo	– Run	#3
Config
(Thread)

Threads/D
oP Array	Size File	1

Seconds
File	2	

Seconds
File	3	

Seconds
File	4	

Seconds
File	5	

Seconds
Total

Seconds

ADF 16 1 158 192 145 109 198 802

PL/SQL 16 1 37 43 31 23 44 178

PL/SQL 16 256 26 31 24 17 33 131

Set 8 N/A 3 3 2 3 3 14

DEMO



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

0

5000

10000

ADF 1
Thread

ADF 4
Threads

ADF 16
Threads

PL/SQL 1
Thread

PL/SQL 1
Thread

Array 256

PL/SQL 16
Threads

PL/SQL 16
Threads

Array 256

Set-Based
DoP=8

Config

C
P

U
 S

ec
on

ds

Tier
Apps

DB

CPU Seconds per Test by Tier

CPU	Usage	

Blue	is	Apps	Tier	CPU	
seconds

Red	is	DB	Tier	CPU	
seconds

DEMO



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

CPU	Usage	

Config Threads/DoP Array Size DB	CPU Apps	Tier CPU Total	CPU
CPU	per	1k	

Rows
Processed

ADF 1 1 3,583.18 9,464.46 13,047.65 3.45

ADF	 4 1 3,476.46 7,330.17 11,454.98 3.03

ADF	 16 1 4,608.08 8,039.97 12,699.14 3.35

PL/SQL 1 1 1,775.04 0.00 1,775.04 0.47

Pl/SQL 1 256 863.03 0.00 863.03 0.22

PL/SQL 16 1 2,351.20 0.00 2,351.20 0.62

PL/SQL 16 256 1,755.99 0.00 1,755.99 0.46

Set 16 N/A 101.22 0.00 101.22 0.02

DEMO



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

CPU	Usage	

0

1

2

3

ADF 1
Thread

ADF 16
Threads

ADF 4
Threads

PL/SQL 1
Thread

PL/SQL 1
Thread

Array 256

PL/SQL 16
Threads

PL/SQL 16
Threads

Array 256

Set-Based
DoP=8

Test

C
P

U
 p

er
 1

K
 R

ow
s

Config

ADF 1 Thread

ADF 16 Threads

ADF 4 Threads

PL/SQL 1 Thread

PL/SQL 1 Thread Array 256

PL/SQL 16 Threads

PL/SQL 16 Threads Array 256

Set-Based DoP=8

CPU Seconds per 1k Rows

DEMO



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Set-Based	Processing

• Techniques	include:
– Database	Parallelism
– DDL	instead	of	DML
–Multi-table	inserts	with	Common	Table	Expressions
–Window	functions	for	row	labeling

• Faster,	uses	less	CPU,	and easier to	code	and	support
• Set-based	SQL	moves	processing	to	data	– Oracle	DB	is	a	processing	engine
• With	Set-Based	SQL,	we	can	choose our	performancewith	DoP

Exploit	the	power	of	SQL



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Embracing	Set-Based	SQL
• Once	you're	in	PL/SQL	opportunities	for	set-based	SQL	open	up	naturally
– You,	the	developer,	write	the	SQL
– Layered	software	architectures	usually	prevent	this	as,	by	design,	SQL	is	invisible

• Very	often	there	is	opportunity	to	embrace	set-based	SQL
– You	specify	the	“what”	and Oracle	figures out	“how”
• Speedup	of	development

– Replacing	row-by-row	with	set-based	SQL	also	delivers	execution	speedups
• Coming	from	row-by-rowLayered architectures,	10X-100X	or	more	often achievable

• You	move	business	logic	into	SQL	(rich	SQL)



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Original	Example:	Batch	Program
• Able	to	rewrite	using	set-based	multi-table	insert	statements	(MTI)

• Row-by-row	Java/JDBC	used :	437	DB-CPU	seconds
• Row-by-row	PLSQL	used :	204	DB-CPU	seconds
• Set-based	used :					7	DB-CPU	seconds



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Original	Results	Visualized

• If	you	choose	Layered,	you’ve	committed	to:
– Having	to	purchase	a	lot	of	hardware	and	DB	licenses
– Blaming	database	for	your	performance/scalability	
issues

Whereas	you	should	blame	your	chosen	architecture

Almost	100X
Just	think	about	this…	



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Big	Picture

Introduction

Layered	Architecture:	History,	Landscape,	and	Issues

Demos	and	Technical	Stuff

Big	Picture

Concluding	Thoughts

1

2

3

4

5



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance	with	Layered	Architectures

Database Network
Application	

server	
running	JVM

From	database's	perspective	…

Elapsed	time =	
(DB	time)	+	("Time	not	in	database")



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance	with	Layered	Architectures

Database Network
Application	

server	
running	JVM

From	apps	server's	perspective	…

Elapsed	time =	
(JVM	time)	+	("Time	not	 in	JVM")



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

OS/Thread/Proc	
start/wake/other

Performance	with	Layered	Architectures

Database Network Application	
server	running	

JVM

16	Thread	ADF	Example

Elapsed	=	13.4	minutes

DBT	=	4.8	mins JVM		=	5	mins
3.6	mins

What	if	your	network	is	
slow?



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

OS/Thread/Proc	
start/wake/other

Performance	with	Layered	Architectures

Database Network Application	
server	running	

JVM

16	Thread	ADF	Example

Elapsed	=	13.4	minutes

DBT	=	4.8	mins JVM		=	5	mins
3.6	mins

When	you	
move	data	to	
processing	
(row-by-row),	
there's	a	
penalty



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

OS/Thread/Proc	
start/wake/other

Performance	with	Layered	Architectures

Database Network Application	
server	running	

JVM

16	Thread	ADF	Example

Elapsed	=	13.4	minutes

DBT	=	4.8	mins JVM		=	5	mins
3.6	mins

How	much	
control do	you	
have	over	
performance	
with	the	
penalty	for	
each	row?



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance	with	Layered	Architectures
Where	is	the	Leverage?

Where	do	you	start?

In	the	land	of	
incremental	gains



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance	with	Layered	Architectures
Where	is	the	Leverage?

Where	do	you	start?



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance	with	Layered	Architectures
Throwing	application	parallelism	at	the	problem

Over-processed

Contention

Is	this	the	point	you	
start	bottom-up	

analysis?



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance	with	Layered	Architectures
Throwing	application	parallelism	at	the	problem
AdminServer-diagnostic.log:[2016-09-15T14:03:23.210-07:00] [AdminServer] [NOTIFICATION] [DFW-40101] [oracle.dfw.incident] 
[tid: TaxMatch125] [userId: <anonymous>] [ecid: 47e4c839-a6ff-4dc8-b4f6-7155f95baca7-00000023,0:4:1548] [APP: RwpTax2] An 
incident has been signalled with the incident facts: [problemKey=DFW-99998 
[oracle.jbo.pool.ResourcePoolException][oracle.jbo.pool.ResourcePool.allocateResource][RwpTax2] incidentSource=SYSTEM 
incidentTime=Thu Sep 15 14:03:23 PDT 2016 errorMessage=DFW-99998 executionContextId=null]
AdminServer-diagnostic.log:[2016-09-15T14:03:23.210-07:00] [AdminServer] [WARNING] [DFW-40125] [oracle.dfw.incident] 
[tid: TaxMatch125] [userId: <anonymous>] [ecid: 47e4c839-a6ff-4dc8-b4f6-7155f95baca7-00000023,0:4:1548] [APP: RwpTax2] 
incident flood controlled with Problem Key "DFW-99998 
[oracle.jbo.pool.ResourcePoolException][oracle.jbo.pool.ResourcePool.allocateResource][RwpTax2]"
e21b0a54-30f2-4028-bf18-a1c62871c7d4-00000373,0:2:11:1556284] [errid: 349] [detailLoc: /nfs-
shared/wls/home/user_projects/domains/rwp_domain/servers/AdminServer/adr/diag/ofm/rwp_domain/AdminServer/incident/incdir_
349] [probKey: DFW-99997 [java.lang.OutOfMemoryError]] [APP: RwpTax2] incident 349 created with problem key "DFW-99997

What	do	you	do	
when	you	run	out	of	
application	server	

resources?

Can	you	really	choose
your	performance	

this	way?



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Concluding	Thoughts

Introduction

Layered	Architecture:	History,	Landscape,	and	Issues

Demos	and	Technical	Stuff

Big	Picture

Concluding	Thoughts

1

2

3

4

5



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Remarks

1. The	implication	of	all	this
2. SQL	isn’t	accidental
3. “My	enterprise	application	is	too	complex”
4. Beware	of	risks	if	you	go	SmartDB



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

1:	The	Implication	Of	All	This,	Visualized
App	
server

App	
server

App	
server

App	
server

App	
server

Database	is	always	
first	bottleneck100	TX/Sec200	TX/Sec300	TX/Sec400	TX/Sec500	TX/Sec

With	SmartDB	you	can	
process	more	with	
same	DB	hardware

With	SmartDB	you	
can	process	same	

with	less	DB	licenses

La
ye
re
d

S
M
A
R
T
D
B

500	TX/Sec

Set-based	SQL…

500	TX/Sec



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

1:	The	Implication	Of	All	This
• Moving	poor	SQL	into	PL/SQL	likely	frees	up	50%	of	your	DB-CPU	time

• Moving	business	logic	from	layered	sw-architecture	in	JVM’s,	to	
straightforward	PL/SQL,	makes	it	require	10X	less	CPU

• Your	question	1:	does	the	10X	less	CPU	fit	in	the	50%	freed	up	DB-CPU’s?
In	case,	“no”:
• Your	question	2:	where	can	I	embrace	set-based	SQL	to	make	it	“yes”?



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

2:	SQL	Isn’t Accidental,	It’s	Fundamental

• There	are	nearly	always	opportunities	for	your	business	logic	to	be	pushed	
into	set-based	SQL

• Why	is	this	the	case?
• There’s	a	fundamental	reason for	this...



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

2:	SQL	Isn’t Accidental,	It’s	Fundamental

The	Real	World

Us,	living	 in	the	real	
world,	using	natural	
language to	reason	
with	each	other	

about	the	real	world

We	reason	in	this	
model	using	rich,	
set-based, SQL

Application:	model	of	a	
part	of	the	real	world	

about	which	we	want	to	
reason	using	computers

SQL	is	based	on	logic	and	set	theory

Logic	and	set	theory	are	based	on	
natural	language,	particularly	the	
parts	of	it	that	deal	with	reasoning

So	we	reason	in	the	model	using	
language	that	was	based	on	how	

we	reason	in	the	real-world
Ergo,	SQL	fundamentally	fits	what	

we	want	to	achieve



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

3:	My	Enterprise	Application	Is	Too	Complex
• “I	cannot	do	my	application	logic	in	SQL	and	PL/SQL”
– Both	SQL	and	PL/SQL	have	become	incredibly	rich
– Given	our	context (transactional	enterprise	applications)	and	SQL’s	fundamental	
fit,	it	would	be	strange	if	your	logic	cannot	be	dealt	with

• Don’t	underestimate	width	and	depth	of	SQL	and	PL/SQL
• And,	all	DB	features	surrounding	these	two	languages
• Counterpoint	– be	prepared	for	your	developers	to	say	“I	don’t	want to	
move	my	application	logic	…”



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

3:	Often	This	Is	The	Issue	When	SQL	+	PL/SQL	Are	Dismissed

• A	mindshift	is	required:

• You	need	to	start	thinking	in	“processing	data”
• Instead	of	“interacting	with	objects	that	have	behavior”

• A	relational	database	design should	be	your	frame	of	reference
• And	not	an	object	oriented	domain	model



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

4:	Beware	Of	Risks	If	You	Go	SmartDB

• Make	sure	you	involve	people
–Who’ve	done	this	before
–Who	think	“processing	data”
–Who	are	experienced	in	designing	databases
–Who	know	full	power	of	SQL	and PL/SQL

• If	you’re	new	to	this:	obviously	start	small



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

4:	Reach	Out	to	Active	SmartDB	Community	
• Oracle	Technology	Network,	Database,	SQL	and	PL/SQL	forums:
https://community.oracle.com/welcome
• Ask	The	Oracle	Masters:
https://asktom.oracle.com
• Oracle	Dev	Gym:
https://devgym.oracle.com/
• Stack	Overflow:
https://stackoverflow.com/questions/tagged/plsql
https://stackoverflow.com/questions/tagged/oracle
• Oracle-l	maillist:
https://www.freelists.org/list/oracle-l



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Conclusions

Layered	architectures	don't	let	you	choose your	performance	
• Row-by-row	algorithms	across	multiple	stacks	=	more	time,	less	throughput
• This	per-row	tax	multiplies	as	data	volume	increases	
• You	can	only	control	a	small	piece	– the	piece	of	code	or	infrastructure	you	own
• Increased	CPU	usage,	which	increases	software/hardware/Cloud	costs
• Easy	to	run	into	contention	/	bottlenecks	and	difficult	to	resolve	– usually	
involves	complex	application	code	change

Can	You	Choose	Your	Performance	with	Layered	Architectures?



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Conclusions

Layered	architectures	drive	data	to	processing,	not	processing	to	data
• Data	shipped	to	Apps	tier	at	unit	of	lowest	common	denominator	– a	row	(or	column!)

• Database	viewed	as	persistence	layer,	not	processing	engine
• Equates	to:
– Lots	of	round	trips,	lots	of	stack	traversal,	thread/process	sleep/wakeup/start/stop
–…	means	more	CPU	and	less	efficient,	and	
–…	both	performance	and	resource	usage	dependent	on	#	of	rows/columns

• Increased	CPU	=	higher	software/hardware/Cloud

Moving	Processing	to	Data



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Conclusions

Layered	architectures	foster	a	bottom-up	performance	culture
• Layer	owners	only	have	visibility	/	responsibility	over	small	piece	of	puzzle
• Owners	spend	lots	of	time	"tuning"	their	piece,	chasing	percentage	points
• Lack	of	ability	to	innovate
• "Race	to	the	bottom"	mindset	– expert	in	each	layer	focuses	on	their	layer	
and	nobody	looks	holistically

Incremental	Performance	Improvements



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

If	We	Have	Time	…

• Going	#SmartDB,	or	
• Connections	and	Connection	Pools	(it’s	relevant,	I	promise)



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|


