Oracle Database:
Processing Engine or Persistence Layer?

John Clarke

Software Development Director
Real-World Performance

Oracle Server Technologies

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2018, Oracle nd/or its affiliates. All rights reserved. |

Safe Harbor Statement

The followingis intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporatedinto any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

What is Real-World Performance in 20187

Bridging the Divide from Today’s Performance to What is Possible

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Real-World Performance 2018

Who We Are

* Part of the Database Development Organization
* Global Team located in USA, Europe, Asia
* 350+ combined years of Oracle database experience

* Innovate to achieve exceptional Database Performance

* Our methods:
* Use the product as it was designed to be used
* Numerical and logical debugging techniques

* Educate othersaboutthe best performance methods and techniques
* Avoid and eliminate “tuning” by hacking/guessing/luck

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Do you have the ability to choose your performance?
Do you move data to processing or processing to data?

Are you happy with incremental performance
improvements?

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Acknowledgements

* Toon Koppelaars, RWP

— Performed much of the research & authored much of the content
— Leads #SmartDB charge from Real-World Performance

* Bryn Llewellyn, PLSQL Product Manager
* Many other RWP engineers over the years

* Oracle’s Fusion Applications/SaaS teams, designs, and solutions, which
motivated us to do the research

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Introduction

D Introduction

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Application Architecture
How Do You Design apps?

" |f you had to validate a single row on a web form, how would you
design your app?

= What if you had to validate millions of rows that arrived as a batch?

* Do vyou do this?
Design(Many rows) = Design(One row) * #Rows

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Some Context

* The database -> a processing engine, or persistence layer?

* OLTP: transactional enterprise applications
— Data store as foundation, for which we use Oracle’s RDBMS
— Much/complex CRUD functionality on top
— User interfaces, workflows, batch jobs, reports, APIl's to other applications
— Potentially many users

* OLTP techniques for batch programming

* Not: data-warehouse, business-intelligence, big-data
— But CSconcepts applicable

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Transactional Enterprise Applications

* A big component of these applications is “Business Logic”

* What is “Business Logic”?

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Transactional Enterprise Applications

User Software _
Interfaces | Interfaces * Conceptually three tiers

— Functionality exposed via interfaces

* GUI's for humaninteraction
* REST, Soap or otherwise, for software interaction

— Business logic

— Data store, relational database

ORACLE REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Wiki

BUSineSS lOgiC Conditional “If-then-else-loop” code with

embedded data access statementsin it
The way the business requires thisto be done

From Wikipedia, the free encyclopedia

In computer software, business logic or domain logic is the part of the
program that encodes the real-world business rules that determine how

data can be created, displayed, stored, and changed. It is contrasted with

the remainder of the software that might be concerned with lower-level
details of managing a database or displaying the user interface, system

infrastructure, or generally connecting various parts of the program.

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

e Y

saL Logic
sQL

\ SQL sQL

Business

SQaL

SQL /

We See Two Mutually Distinct Approaches

RDBMS= Persistence Layer RDBMS = Processing Engine
“Layered Architecture” “#SmartDB”

~

Software

User Software
Interfaces | Interfaces

Somethingelse = [aces | Interfaces
“If-then-else-loop” I\

J

language used

sSQL +/- PL/SQL = “If-then-

Business

else-loop”
language used

SQL Logic

sqL SaL saLsat

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

A quick poll

* In your typical DB application, what would be the distribution of CPU work
between BL and SQL?

i User Software\
\Interfaces Interfaces)
c ~ 2:
e
Business 20% 50% 80%
30% 50% 20%

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Ever Seen This?

Constitutes the byte-stream

thatis your executable program
that gets run by the CPU

ORACLE

REAL-WORLD PERFORMANCE

22 11 00 FF
CA
F6

5C 24 04
34 48

C3

EB

foo:

mov .l
addl
Xorl
pushl
movl

leal

cmp .l
jnae
retl

SO0xFF001122,
zecx, %sedx
%esi, %esi
Tebx

4 (sesp), %ebx
(%eax, secx,2),
%$eax, %ebx
foo

zeax

%esi

 Program] [Clock-ticks required
Counter \ for instruction
Data
manipulation
N

81d0 |[mov r12, #0 i=0 1

81d4 ||mul rl, r12, r12 —[. .)

81d8 | |mov r2. r12. sl # - Machine code mnemonics J

81dc | |[mov r3, #15 r3 =15 [

81e0 |[mla r3, rl, r3, 12 3 =rlxr3 +12 3

8led4 ||add r3, r3, #79 r3=r3+79 |

81e8 ||str r3, [r0, r12, 1sl #2] | dest[i] = r3 2 —

8lec ||add r12, r12, #1 i+t 4[Conditional J B8

81f0 |[cmp rl2, #64 is i<64? branching/looping g}

81f4 | |bne 81d4 yes? branch 81d4 | 1 53

8118 bx Ir return 1 8B
8D
39
72
c3

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Why Did | Show That?

* Re-introduction of term “if-then-else-loop language”

* Start thinking about how computers accomplish the tasks they’re asked to
perform ...

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

“If-then-else-loop” Languages

* Every compiled program translates to machine code
which always is sequence of:

— Moving data between main memory and on-core registers
— Changing valuesin these registers
— Computing new values using these registers
— Comparing values in registers with literals and/or other registers
— Conditional (or unconditional) branching
* All program languages (PL/SQL, Java, JavaScript, ...) are

just higher levels of abstraction to this
= if-then-else-loop languages

ORACLE

ORACLE

REAL-WORLD PERFORMANCE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

PC Instruction Meaning ET
81d0 | mov rl12, #0 i=0 1
81d4 | mul rl, r12, r12 rl =ixi 3
81d8 | mov r2, r12, Isl #3 2 =ix8 1
81dc | mov r3, #15 r3=15 1
81e0 | mla r3, rl, r3, 12 r3=rIxr3 +r2 3
8led4 | add r3, r3, #79 B3=r3+79 1
81e8 | strr3, [10, r12, Isl #2] | dest[i] =13 2
8lec | add r12, r12, #1 i++ 1
81f0 | cmp rl2, #64 is i<64? 1
81f4 | bne 81d4 yes? branch 81d4 | 1
81f8 | bx Ir return 1

Machine code bytes

Assembly language statements

fo

B8 22 11 00 FF
01 CA

o:
movl $0xFF001122, %eax
addl %ecx, %edx

31 F6 xorl %esi, %esi

53 pushl %ebx

8B 5C 24 04 movl 4 (%esp) bx
8D 34 48 leal (% 2)
39 C3 mpl %ea b

72 EB jnae foo

C3 tl

Example Business Logic: Code With Embedded SQL

begin
- “: ”
select o.LIMIT into 1_limit £ Single-row data access if-then-else-loop” code
from ORDERS o
where o.ORDER# = 1_order#;
1 high_risk := (1_limit > 2000); ! Business IOgiC Primitive data access
if 1 high risk (single table, row-by-row)
then -
for r in (select * from ORDERLINES ol where ol.ORDER# = 1_order#) <[Row fetching (data access)
loop
if r.STATUS = 'OPEN'
Business | then =| Business logic
k)gic if r.discount > 10 then 1_discount := r.discount - 10; else 1 discount := 0; end if;
update ORDERLINES ol set ol.DISCOUNT = 1_discount b .
where ol.ORDERLINE# = r.orderline#; Row- y-row updatlng (data access)
end if;
end loop;
end if;
end;

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

REAL-WORLD PERFORMANCE

Multiple tables referenced

Set-based data processing, aka “rich”SQL
Multiple rows processed

Example Business Logic: All in SQL

update ORDERLINES ol set ol.DISCOUNT = greatest(ol.DISCOUNT - 10, ©)
where ol.ORDER# = 1 order#
and ol.STATUS = "OPEN’
and exists(select 'high-risk!’
from ORDERS o

where o.ORDER# = 1_order# and o.LIMIT > 2000) Nf\(ou declare what needs to)

be done.
SQL exec engine &
For now, we’re going to] optimizer translate this into
assume this is how it appears code equivalent with code

on previous page)

Point to be made = BusinessJdgic can appear:
[As code-linesin some programming language that issues simple (poor) SQL]
As part of (rich) SQL
Both...

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Layered Architecture: History, Landscape, and Issues

D Layered Architecture: History, Landscape, and Issues

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Oracle v4, v5, v6 Database Documentation

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Oracle7, 8i: Database Documentation

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

History Observation: End of "SmartDB" Era

= Features available in DB 11 YA
= DB-features used by application T 1 1 T / ‘
developers L/ |

Advent of J2EE //
and MVC frameworks Ve

a 1 p.
_cé) ‘A /// Advent of JavaScript
kS 7~ frameworks
v [
3 Oracle7 \\ Collapse of JEE
©
g \ ¢ J
=1 | | |
1985 1990 1995 2000 2005 2010 2015
Reign of "SmartDB" era Rise of “Layered Arch" era
DB = processing engine DB = persistence layer

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Where Were We at End of 1990's?

* Applications capitalized on database being a processing engine

S
= Thin client:
: Ul-only

‘ﬁ Calls to “smart data services”

Business logic done with PL/SQL and rich SQL

Stored PL/SQL modules and views

Properly designed relational database schema
decorated with declarative constraints

Tables typically never accessed directly

ORACI_e REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

What Has Happened Since?

Database to only fulfill persistence layer role (bit bucket)

https://
= X m

Model-View-Controller (MVC)
framework era during
15t decade of new millennium

Ul/View-fw
Control-fw | Model All'l bl:;iness Iogi%in d\
Businescf SV application server base
Il\J/lSIdeTSf W / N on hierarchical/network
P -O = Wf View Controller domai_n mOdeI
ersistence-tw)') Poor SQL issued to DB)
JDBC

Generated/used tables (to persist object hierarchy)
often without constraints

Direct access to all tables

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

What is a Layered Software Architecture?

Relatively common architecture

"n-Tier" architecture

Standard for most Java EE applications

Widely used by architects, designers, developers

ORACLE

ORACLE

REAL-WORLD PERFORMANCE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

What is a Layered Software Architecture?

—

Ly Lfll' Presentation Layer = QOrganized into horizontal layers

:@;ﬁ'ﬁ Model Layer

’

e ¢ d

'.,5!\?_5',7 Business Layer = Each layer performs specific role

= Most consist of 4-5 major layers

-

-
“" Persistence Layer
= Layers generally include

presentation, business logic, model,
persistence, and database

-
= 1 Database Layer

ORAC Le REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Why a Layered Software Architecture?

= Layers are typically closed and expose
API's for invocation

1% M [Presentation Laye~_
St 0S

?

k Model Layer = Isolation enables separation of concerns
S C and layer independence

ed

— ey

= Each layer must go through layer API's

}r," Business Layer directly below it; enforces isolation

- :
Persistence Layer Closed = Makes it easy to re-use, build, and
(theoretically) test and maintain
application

-
& 7 Database Layer
5 e R

ORAC Le REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Implications of a Layered Software Architecture

= All ap(ialication logic builtin layers

4";?;'” Presentation Layer outside database

(IR0

= SQL is hidden for/from developers

gﬁtiq Business Layer

= Bottom layers translate GUI
structuresto relational data, often
generating row-by-row SQL

I Model Layer

- : statements

- Persistence Layer
3 = Database = (dumb) table store or "bit
i Database Layer bucket"”, not a processing engine

&

ORACLE REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Important Points to Make (1/2)
* In layered MVC approach SQL is invisible

* Almost always SQL is hidden from developers e roms
— Object oriented domain models are used
— Developersinvoke methods on objects

— Objects map to tables via persistence framework (ORM) Ul/view-fw
* Object Relational Mappingtools Control-fw
Business-fw

* Common for Modern developersto know Java, not SQL |[__Model-fw
Persistence-fw

JDBC

* ORM's produce single-row (or column), single-table SQL

— In contrast to rich-SQL Direct access to all tables

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Important Points to Make (2/2)

. Ul-fw
* Doing everything with single-row, single-table SQL Control-fw
c " . . Business-fw
results in "chatty" applications [T Vodelfu
— Especially for batch processes back and forth Pers'j;e;ge'm

— Think: 50K-200K DB-calls/second

Directaccess to all tables

* In ‘90s we referred to this as "roundtrips”

— Roundtrips were bad (for performance) then, and still are today
* Bad then because of network—latency[(now: because of CPU required)]

— Oracle7, with stored PL/SQL, helped us mitigate this
— By moving business logic into database

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

I’ll come back to this
shortly

“Chatty” Applications

* Moving business logic into stored PL/SQL, reduces #roundtrips

Layered Ul One roundtrip between ! Ul
| [T] [processes/machines [] SmartDB
4 \)
Hire_Employee Hire_Employee

Business Logic Five roundtrips between Business Logic
. A A A A A processes/machines

SQL SQL SQL SQL SQL

within context of

Five SQL calls
single process

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

New Paradigm Shift Happening: Java = JavaScript

* Server-side Java MVC-frameworks approach has been ubiquitous

* New architectureis arising:
— Browser-side JavaScript (V+C)

— Server-side JavaScript (M)
— REST to glue it together

4 U/ VIR)
— Databasesstill as persistence layer ConNZI-fw

Business-fw

..) . Model-f
* |n a sense, this is just client/server all over again Persistenc:ffw VM

— Responsive Ul runningon client: browser has Control _ 1IDBC Y,
— Smart data services runningon server (JVM)

Direct access to all tables

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

We’'ve Now Truly Gone Full-Circle...

Character Graphical

Stateful 1990-1995 1995-2000 \

No more
responsiveness

Javascript / Ajax / Dhtml
Partial page refresh

V+C back into browser
Stateless ...1990 2000-2010 “Client/Server 2.0”

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Real World Example

Development Framework Decisions

There are a number of layered development frameworks available

Oracle ADF

) spring
mvc

o HIBE RNATE

ORACI_e REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Layered Architecture with Hibernate

‘m y l Presentation Layer
——:-t-"

Usablein presentationlayer

?Ekﬁgq Business Layer

Validation

= Model Layer

~ Persistence Layer

Data Access Objects

Database Layer TABLES

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Layered Architecture with Oracle ADF

‘m y l Presentation Layer
——:-t-"

Application Module (AM)

?Ekﬁgq Business Layer

View Objects (VO's)

= Model Layer

~ Persistence Layer SULERIE R EC S

)
& 4 Database Layer TABLES

gy - &

ORACI—E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Issues with Layered Architectures

1. Stability of technology stack
2. Development and maintenance cost

3. Performance and scalability

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Reminder...

* OLTP: transactional enterprise applications

— Data store as foundation[for which we use Oracle’s RDBMS]

— Much/complex CRUD functionality on top

Thisis the “stable” factor” over the years - everything
else on top of it, has not been...

ORACI_e REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Stability of Technology Stack —Java MVC

* Java frameworks came and went much faster than did our applications

TotaIIy different Is still
PL/SQL and SQL from MVC used PL/SQL and SQL
used here MVC used here here used here

Vv N

t 1 t t t t t t t t——rt t t t t

1985 1990 1995 2000 2005 2010 2015
Reign of "SmartDB" era Rise of "NoPlsql" era
DB = processing engine DB = persistence layer
a) spring eclipse)link BC4J) / ADF-BC vaadin }>
myvcC
View o | Controller Google
u o @ GRAILS ¢HHIBERNATE ADF Controller @ Web Toolkit ®

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

o

tapestry

®

APACHEWICKET

Stability of Technology Stack — JavaScript MVC

Is totally Is totally different
different from JavaScript from JavaScript
MVC used here MVC used here used here used here
s
1985 1990 1995 2000 2005 2010 2015 2020
Reign of "SmartDB" era Rise of "NoPlsql" era Rise of JavaScript
DB = processing engine DB = persistence layer everywhere st
RV D o — — =
mRAOAN N |O , @ "@’,dc g P fw‘g.
SEERAE X V {b _ @ g Technology volatility =
oK B - - L@D currently worse in emerging
oA » =g a| | BABACKBONE)S i «<jauery new world

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Issue 1: Stability of Technology Stack

* |f layers in your chosen technology stacks are volatile...

Then you ought to use them "thinly"

— |.e. do notdo business logicin them

— Instead, push business logic further down into code-stack where stable layers exist
Why? Enables agility = it’ll be easier/cheaper to deal with the volatility

* But nobody has been doing that...
We have been creating cemented maintenance nightmares in past 15 years

* Prediction:
PL/SQL and SQL will still be here 10 years from now when JavaScript's reign

ends

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Issue 2: Development and Maintenance Costs

* Issue is multifaceted
— Layered technology stacks are complex

— Wheels are reinvented

—1s OO0 a good fit for business logic of database applications?

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Hibernate...

* “ had to learn Hibernate architecture, configuration, logging, naming
strategies, tuplizers, entity name resolvers, enhanced identifier generators,
identifier generator optimization, union-subclasses, XDoclet markup,
bidirectional associations with indexed collections, ternary associations,
idbag, mixing implicit polymorphism with other inheritance mappings,
replicating object between two different datastores, detached objects and
automatic versioning, connection release modes, stateless session

interface, taxonomy of collection persistence, cache levels, lazy or eager
fetching and many, many more.”

https://www.toptal.com/java/how-hibernate-ruined-my-career

MVC Technology Stacks Are Complex
* Witnessed many projects: both #SmartDB and Layered/MVC

: : . : Ul-fw
* Disproportional large amount of time spent on getting Control-fw
frameworks known and then set up and work all together Business-fw
Many discussions on "how to do this?", "how to do that?" Model-fw
Persistence-fw
* (Counterargument?): Modern developers taught to “plug” JDBC

* Much time is spent on "plumbing" code
— Code that doesn’t add value to the business

* SmartDB developers proportionally spend more time on what
end-users care for, on what is unique to application: its business logic

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Wheels Are Reinvented

* Both by frameworks as well as by developers

— Transaction management, cache synchronization, read-consistency, security, ...

— Do-it-yourself: joining, set-operations, grouping, sorting, aggregation, ...

* All available out-of-the-box inside database or declaratively via SQL

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Is Object Orientation (OO) a Good Fit?

* Example use-case: funds transfer
Inputs: source-account, target-account, transfer-amount

— Performvalidations oninput values

— Apply various "businessrules”
* Lookup customer-type and apply type specific policies
* Lookup account-type and apply type specific policies Sl
 Validate enough funds available for transfer procedural code

— Perform/transactfunds transfer with embedded

— Log transaction including policies applied queries and DM

* [n essence nothing OO-ish about business logic
Natural fit = implementation via some if-then-else-loop language
Preferably one that does SQL really well: think PL/SQL

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Issue 3: Performance and Scalability
* "Database is always bottleneck", so here's the Layered/ORM/MVC promise:

— Get data from DB once into mid-tier caches
— Then re-use many times in business logic runningin horizontally scalable mid-tier servers
— Write data back to DB once

* Always major argument to reject SmartDB approach

“SmartDB approach (running BL in DB) will saturate database real quick”
“It won’t scale”

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Performance and Scalability

* However in real-world:
— Hardly ever see these cached data "re-uses” - these applications are *always* chatty
— Dataread + manipulated once, then written back, and not used again whilein cache
— Where's the advantage then?

* Also:

— Instantiating objects for rows, takes a lot of memory and CPU
Datais always cached in multiple layers: JDBC, ORM, model framework, Business Logic modules

— Cached data volumes become so big that caches need to flush data pre-maturely

* Also, part Il:
— Whereis my time beingspent? More onthis later...

* Btw: datais already cached very efficiently at database tier...

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Demos and Technical Stuff

B Demos and Technical Stuff

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Figure out

Summary Here

* Original story at Oracle Learning Library channel on youtube

https://www.youtube.com/watch?v=8jiJDflpw4Y

Search: "toon koppelaars"

The NoPlsql and Thick Database Approaches

Which One Do You Think Requires a Bigger Database Server?

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Our (First) Experiment

* Event-processing module based on real-world example
— Built using SmartDB approach: PL/SQL stored procedure with embedded SQL
— Built using layered approach: Java with embedded SQL on top of (thin) JDBC
Both built using row-by-row simple/poor SQL pattern

* Straight-forward business logic: if-then-else, looping

the same

* With typical load profile that we see all the time: 4[\5.\,. SQL-statements
— Many single-row SQL statements, mix of reads and writes
— Index maintenance

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Both runs execute]

Java/JDBC versus PL/SQL

Invoke method on
main class

‘ Invoke packaged
procedure

Business logic
JVM| inJava with
embedded SQL

$

Business logicin
PL/SQL with
embedded SQL

No network
Same box =2 IPC

SQL engine SQL engine

ORACI_e REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Java/JDBC versus PL/SQL

Elapsed-time: 11 minutes Elapsed-time: 3 minutes 30 seconds

Business logic
JVM| inJava with
embedded SQL

$

217 CPU seconds

Business logicin
PL/SQL with
embedded SQL

—> 204 DB-CPU seconds

SQL engine 437 DB-CPU seconds SQL engine

ORACI_e REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Real World Example
Daily Batch Program for Tax Matching: Briefing

* VAT Clearing/Matching

— Company A sells to Company B
— Company B buys from Company A
— Each report VAT on purchased goods and sold goods; one business can claim the VAT

* Buy and Sell records must be matched
* Batches received daily in sets of 2: buy records and sell records

* Possible exceptions:

— Duplicates
— Out of sync records; i.e., Buy and Sell records in different batches

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Real World Example

Involved Objects

ORAC Le REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Real World Example

Data Flow
¥ Y-

Load rows
daily

ORAC Le REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Real World Example

Data Flow

Match and . -

insert rows ‘
ORACLE

ORACLE REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Real World Example

Data Flow
Buy Sell
transactions transactions
file 4 file 4
PREMATCH_BUY PREMATCH_SELL
table table

DUPLICATE_BUY (Remove \ ‘ ‘ . Remove \

table matched rows. matched rows.
Unmatched Unmatched
rows remain ‘ rows remain
__for nextday / _ for nextday /
MATCHED
table

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

DUPLICATE_SELL
table

Real World Example

Additional Business Logic: Discard Duplicates

Buy Before loading a
transactions row verify for
Park duplicate file duplicates

Sell
transactions
file 4

rows in separate
table ‘ V
' PREMATCH_BUY

table
DUPLICATE_BUY
table

MATCHED
table

ORACLE ORACLE
REAL-WORLD PERFORMANCE

|

.

PREMATCH_SELL
table

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Park duplicate
rows in separate
table

¥

DUPLICATE_SELL
table

Real World Example

Load Profile

Does a bit of everything:

* Inserts into five tables

Performs indexed lookups for de-duplication and matching
Deletes from PREMATCH tables

Index maintenance

Some business logic (if-then-else) to de-dupe and match

* We already have a Web Ul that does VAT matching for single buy/sell record
* We'll reuse its business/model/persistence layers

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Tax Demo — Run #1

DEMO

Config Threads File 1 File 2 File 3 File 4 Total
Seconds Seconds Seconds Seconds Seconds Seconds
ADF 1 1,674 8558
ADF 4 2,328
ADF 16 802
PL/SQL 1 1727

ORACLE" ORACLE
REAL-WORLD PERFORMANCE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

DEMO

Tax Demo — Run #1

Load Profile

Per Second Per Transaction Per Call
DB Time(s): ADF 1 Thread 0.0 0.00 0.00
DB CPU(s): 0.0 0.00 0.00

ADF job spends less
time in the database

Load Profile
PL/SQL 1
Thread .
Per Second Per Transaction Per Call

DB Time(s): 0.0 0.00 0.23
DB CPU(s): 0.0 0.00 0.23

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

DEMO

Tax Demo — Run #1 (Continued)

Load Profile

ADF 1 Per Second Per Transaction Per Call
DB Time(s): 0.1 0.00 0.00
DB CPU(s): 0.1 0.00 0.00

f
With 16 threads, our

ADF job is only activein
the database 5.7
seconds per second

_

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Why did we show PL/SQL again?

= Qurlayered (ADF) application forced us down a row-by-row path

= We can easily do row-by-row processing in PL/SQL

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

DEMO

Tax Demo — Run #1

\
Elapsed Time (s) | Executions | Elapsed Time por Exac (s) [%Total] %CPU (%10 | [REVHTENCHBRMRRES
907.39 5 18148 50.64 99.05 0.05 & P: EGIN matching_thread.match(1-...
409.09 5 81.82 2283 99.14 0.29 EGIN matching_thread.prematch...
408.78 5 81.76 22.81 98.97 046)EGIN matching_thread.prematch...
193.61 3,777,832 0.00 | 10.81 99.36 0.06 4 SQL*Plus DELETE FROM PREMATCH_BUY WHERE...
187.07 3,777,832 0.00 | 10.44 99.81 csdykqq? SQL*Plus DELETE FROM PREMATCH_SELL WHER...
165.56 3,777,832 0.00 9.24 .16 8p0wp2w01ns7p SQL*Plus INSERT INTO MATCHED (CODE, S...
148.01 3,777,961 0.00 9.35 0.08 7n0fbc5grpk9t SQL*Plus INSERT INTO PREMATCH_BUY (COD...
14745 3,777,839 0.0048.23 99.28 0.61 4zt60chx4my3n SQL*Plus INSERT INTO PREMATCH_SELL (CO...
141.24 7,555,884 0.00 7.88 100.95 0.04 8d045khaf6y24 SQL*Plus SELECT COUNT(*) FROM MATCHED M...
89.55 3,778,257 0.00 5.00 100.82 0.00 d3tragc5vg8xv SQL*Plus SELECT X2.*, X2.ROWID FROM PRE...
53.39 0 298 99.88 0.00 dzzzrbrj43and JDBC Thin Client BEGIN :1 := mon_db.startup(int...
38.89 1,765 0.02 2.17 99.53 0.00 admcjs95j4gnn JDBC Thin Client SELECT SUM(VALUE) FROM V$SYSST...
25.40 5 5.08 142 96.72 3.82 229axchrcvjuz SQL*Plus SELECT * FROM V_EXT_SELL WHERE...
25.19 5 5.04 1.41 96.37 3.94 ak9gptbkj80xk SQL*Plus SELECT * FROM V_EXT_BUY WHERE ...
ORACLE

ORACLE

REAL-WORLD PERFORMANCE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Tax Demo — Run #1

7,555,884
3,778,257
3,777,961
3,777,839
3,777,832
3,777,832
3,777,832
88,550
88,550
1,765

ORACLE

7,555,884
3,777,832
3,777,958
3,777,833
3,777,832
3,777,832
3,777,832
88,550
88,550
1,765

Rows per Exec

ORACLE

REAL-WORLD PERFORMANCE

141.24 100.9
89.55 1008 O

148.01 99.4

193.61 99.4
165.56 98.5
16.25 99

2.96 105.6

38.89 99.5

DEMO

This is what row-by-
row processing looks
like

0fbc5grpk9t SQL*Plus
4zt60chx4my3n SQL*Plus
071upcsdykaq?7 SQL*Plus
44xutmzsrnauf SQL*Plus
8p0wp2w01ns7p SQL*Plus
8wps5gfirmésu SQL*Plus
d7pavidwuxk9j SQL*Plus

© OOy O

~

SQL Text

SELECT COUNT(*) FROM MATCHED M...
SELECT X2.*, X2.ROWID FROM PRE...
INSERT INTO PREMATCH_BUY (COD...
INSERT INTO PREMATCH_SELL (CO...
DELETE FROM PREMATCH_SELL WHER...
DELETE FROM PREMATCH_BUY WHERE...
INSERT INTO MATCHED (CODE, S...
MERGE INTO TAX1.TAX_RUN_CONTRO...
SELECT RACE_STATUS FROM TAX1.T...

admcjs95j4gnn JDBC Thin Client SELECT SUM(VALUE) FROM V$SYSST...

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Layered Arch’s Promise? =» Opposite Effect

* Runtime longer — Layered approach performs worse
* DB resource-usage more — Layered approach scales worse
* Layered approach uses more CPU

* Seems “performance/scalability” argument is wrong?

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Tax Demo — Run #2

DEMO

Confi Threads Arrav Size File 1 File 2 File 3 File 4 File 5 Total
8 y Seconds Seconds Seconds Seconds Seconds Seconds
ADF 16 1 802
PL/SQL 1 256 811
PL/SQL 16 1 178
PL/SQL 16 256 131

ORACLE

ORACLE

REAL-WORLD PERFORMANCE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

DEMO

ADF vs. PL/SQL CPU Efficiency

Top 10 Foreground Events by Total Wait Time
ADF (16 Threads)
99.0

L Fvent | Waits | Total Wait Time sec

)

DB CPU 460

SQL*Net message to client 38,050,060 333 0.00 .7 Network

log file sync 65,093 28.5 0.44 .6 Commit

external table read 24,992 271 1.09 .6 User I/O

cursor: pin S 16,841 18 1.07 .4 Concurrency The ADF program uses
cell single block physical read 32,533 17.6 0.54 4 User /O

external table open 320 6.9 21.61 .1 User /O more C PU

cell multiblock physical read 5,535 6 1.09 .1 User I/O

SQL*Net more data to client 81,920 5.7 0.07 .1 Network

buffer busy waits 177,977 5.6 0.03 .1 Concurrency

Top 10 Foreground Events by Total Wait Time

| Event | Waits | Total Wait Time (==} | Wait Avg(ms)
PL/SQL (16 Threads) DB CPU (23512 88.2

buffer busy waits 316,103 108.5 0.34 4.1 Concurrency
enq: HW - contention 7,169 75.4 10.51 2.8 Configuration
log file switch (checkpoint incomplete) 85 28.6 336.17 1.1 Configuration
external table read 24,992 279 1.12 1.0 User I/O
cursor: pin S 13,210 14 1.06 .5 Concurrency
undo segment extension 802 124 15.41 .5 Configuration
KSV master wait 6,916 7.2 1.03 .3 Other

control file sequential read 8,402 6.2 0.74 .2 System /O
DFS lock handle 1,489 6 4.05 .2 Other

ORACLE

ORACLE

REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Exact Same Row-by-row SQL: Why The Huge Difference?

* "The Living Room" analogy

* With SmartDB:
— PL/SQL is already in livingroom, which is where SQL-engine lives

* All other languages need to enter from “outside”

— Go through front door, traverse hall, enter livingroom

And apparently this is *not* for free if you execute lots of DB calls

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

The Living Room

* SQL engine

ORACLE

ORACLE

REAL-WORLD PERFORMANCE

Copyright © 2017, Or

Linux

Oracle

The Living Room

* SQL engine
— Accessible via OPI layer
— Oracle Program Interface

* PL/SQL directly calls OPI

ORACLE" ORACLE
REAL-WORLD PERFORMANCE

Linux

Oracle

Copyright © 2017, O

The Living Room

* Qutside SQL route:

— OS network/ipc layers
* Frontdoor,doormat

— Net/TNS/TT layers

* Hallway

— OPI

=» More code path:
For row-by-row SQL,
you notice this overhead

ORACLE" ORACLE
REAL-WORLD PERFORMANCE

SQL €

Device-driver/Ethernet/I P/TCP-UDP/SocR\{s

Systemlibriry

Prot. adap

r

TNS

SQL*Net

Two-tas

Oracle

Linux

ADF vs. PL/SQL CPU Efficiency

Why is Row-by-Row PL/SQL Using Less CPU?

Sockets/TCP-UDP/IP/Ethernet/Device-driver

Linux

ORACLE" ORACLE
REAL-WORLD PERFORMANCE

Device-driver/Ethernet/IP/TCP-UDP/Sockets

Linux

Oracle

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Researched This Through FlameGraphs

* Flamegraphs visualize proportionally where, in the code, a program spends
its time

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Generating a FlameGraph

* Is really easy

* All you need is two perl scripts, which you can download from
— https://github.com/brendangregg/FlameGraph

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

PL/SQL vs. ADF: CPU Impact

ADF Oracle call stack with Flame Graph

Shipping data in and
out of the database;
outside OPI/SQL
Engine

Application SQL (inside SQL Engine/OPI)]

Recursive

___Write_noc

nsbasic_bsd

\ __/
Executes &
fetches

State initialization,
OS network, I1PC, context prep, find

Net/TNS/TTS _— Cursor, unmap cursor

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

PL/SQL vs. ADF: CPU Impact

PL/SQL Oracle call stack with Flame Graph

T —
—
@EmEERTT

i
@II i
!

II

State initialization,

Recursive Executes & : ™ context prep, find

calls fetches M Application SQL (inside SQL Engine/OPI) [\ cursor, unmap cursor

PL/SQL Engine

ORACLE ORACLE : . .
- REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

PL/SQL vs. ADF: CPU Impact

opiexe

Same code — why does ADF use more CPU?

B s it

i o

= L Pl B gl b R 84 i |
opiexe

ORACLE ORACLE . o .
- REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Generating a FlameGraph

Perf: Linux process profiler

main>p9
main>pl1>p2
main>pl
main>pl>p2>p3
main>pl>p2
main>pl1>p2>p3
main>p1>p2
main>pl1>p2>p3
main>p1>p2
main>p9
main>p9>p4

Perl-1

Sort

perf.data file

ORACLE

\/—

Sample callstack
Write to perf.data

main>pl
main>pl1>p2
main>pl>p2
main>pl>p2
main>pl>p2
main>pl1>p2>p3
main>pl1>p2>p3
main>pl1>p2>p3
main>p9
main>p9
main>p9>p4

REAL-WORLD PERFORMANCE

 pid= 12345

Perl-2

Generate svg-file .

View in browser

main

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

How to Read a Flamegraph

Width of top-surface represents where timeis spent

p4

pl P9

main

%

Width represents # of samples = cpu-time spent

* More info: https://github.com/brendangrege/FlameGraph

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Reason #1

* With layered architecture approach, every database call/SQL-statement
incurs a RDBMS-entry taks

* In #SmartDB there is no entry required for SQL, it’s already in there

Research showed: 40-50% addititional CPU-cycles per SQL-statement

Remember, we’re dealing with row-by-row SQL here

* But that’s not the observed >2X increase in DB-Time...

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Reason #2: CPU Efficiency

* Modern CPU cores are complex factories (just like RDBMS)
— As a thread, it’s best to stayin factoryas long as possible
— Getting off and back on CPU is very expensivein terms of required clock cycles
— Process context-switchingis most expensive CPU operation

* SmartDB approach has fewer process context-switches — stays on the CPU

* Layered approach deschedules many more millions of times per SQL statement,
causing CPU to have to execute additional micro-operations

Researched through
CPU profiling

* What this means is: Layered arch. approaches use more DB CPlﬁ
* What this means is: You use less CPU if you can “stay on it” to get your BL done

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

PL/SQL vs. ADF: CPU Impact Reque 1007)

more CPU

200% more]
instructions

[Caused by more branch &
cache misses |

\
163360.334736 cpu-clock 363395.73Ni99 cpu-clock \
163360.401705 task-clock 3633334886369 task-clock
485,147,753 ,205 cycles 1,054,507,284,440 cycles
224,676,903,673 instructions 497,951,316,616 instructions
16,182,224,526 bus-cycles 35,271,327,010 bus-cycles
749,871 faults 555,928 faults
1,802 cpu-migrations 6,782 cpu-migrations
13,863,704,572 cache-references \ 29,011,223,921 cache-references
149,387,122 cache-misses 262,587,106 cache-misses
115,832 context-switches 4,496,968 context-switches
42,229,605,073 branches 97,003,543,743 branches
821,626,951 branch-misses 3,132,424,179 branch-misses
165.182311836 seconds time elapsed 954.553486931 seconds time elapsed

ORACLE ORACLE | - |
- REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Combined: Layered approach Puts >2X Load On RDBMS

* Reason #1: Overhead in Oracle kernel per SQL statement

* Reason #2: Overhead at CPU-level due to stack traversal, scheduling,
context-switching, etc.

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

One More Point to Make...

Apart from spending time executing SQL ...

* We're also spending time executing the if-then-else-loop language from
which SQL gets submitted

— In Layered approach we’re spending time in Java doing business logic
— In #SmartDB approach we’re spending time in PL/SQL doing business logic

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Required CPU For Getting the Business Logic Done

JVM

Business logic

ORACLE

3

"

’ 217 CPU seconds €«—

in Java with l,
embedded SQL Business logic in
20 DB-CPU seconds PL/SQL with
‘ embedded SQL
204 DB-CPU seconds
437 DB-CPU seconds
SQL engine 184 DB-CPU seconds SQL engine
ORACLE
REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

10X
* Researched through FlameGraphing the JVM

* Analogy: not only do you have to come into (DB) house from outside
You also first have to exit your (JVM) house for every SQL statement

* 90% of time spentin JVM is in: All'three simply do
] not existin
1. Executing JDBC code-layers SmartDB approach

2. Gettingin and out of JVM
3. Other JVM-specifics (JIT compilation, Garbage Collection,...)

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

FlameGraph of JVM

Our business logic is
simply not visible

217 CPU seconds

|
| | |
I | | | |
O I \ ||
il el H |
R = R TR
data in and out . | | I XN |
ip_.. | I | I8 |
ip_.. \ | | | I ;| |
- .] . 1] ‘ || ”l St l I
mmm |3) Restis "JVM housekeeping” | |0 [o1 i
- _net.. - | [| | Wora.. |
|| {proce.. fper || |l [[| |
| met_r.. [lper | n |
| do_..| (] i oracle..
[§call_s.. | | [| oracle..
[| T I) . oracle.. |
(dev_que..] [} native_write_msr.. || [| oracle/..
ip_finis.. | intel_pmu_enable.. [
|ip_output (KSEEpMUNETHEBIENN ||
|ip_tocal.. [} PEFESRENSHEEIENN |
| ip_queue_.. | | perf_event_conte.. ||
I [Ecputransma) || __perf_event_tas.. |
| ftep_write_.. | finish_task_switch ||
- [keppushiii]| _schedule |
| tep_push | schedule (BIGH 12vacalls::call_virtual
|tcp_sendmsg = [} futex_wait_queue.. || | |BhCampa Javacalls:,
[inetsendmsg || | futex_wait JlParal.. SpinPause Our ”progra m"

[0 |sock_sendmsg || do_futex | StealTask::do_it JavaT
| sys_sendto | sys_futex
[|

__libc_send |

2) Most of it is JDBC, ie. getting
SQL ready to be shipped

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

In Summary: Row-by-Row Layered vs. Row-by-Row SmartDB
* If you have your SQL generated by persistence/ORM frameworks,
* Then you’ll get chatty, row-by-row, applications

* Which then results in hugely inefficient use of resources
— Both at DB-server (2X) and JVM side (10X)

* The more chatty your application is, the worse this will be

— Also, the greater the latency, the worse this will be
— Also, the busier your DB server or app server, the worse this will be

* Roundtrips
— Cause massive increase in required CPU power
— Nowadays thisis probably worse than the “time spent on network”

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

DEMO

What Does the PL/SQL Array Interface Do for You?

Array Size 256

Statistic Name | Time (s) | % of DB Time | % of Total CPU Time Statistic Name [Time (s) | % of DB Time | % of Total CPU Time
sql execute elapsed ime 1,7/88.01 99.79 sql execute elapsed time 880.24 99.79
DB CPU 1.775.04 99.06 87.65 1 88303 97.84 82.31
PUSQ'L execution elapsed time 163.99 9.15 PL/SQL execution elapsed time 65.70 7.45
prea Sne elapsed , 1.11 .08 connection management call elapsed time 0.38 0.04
connection management call elapsed time 0.57 0.03 arse time elapsed 0.33 0.04
hard parse elapsed time 0.28 0.02 P P) ’ ’
PL/SQL compilation elapsed time 0.09 0.01 hard parse elapsed time 0.21 0.02
failed parse elapsed time 0.05 0.00 PL/SQL Compilation elaDSEd time 0.09 0.01
hard parse (sharing criteria) elapsed time 0.04 0.00 failed parse elapsed time 0.02 0.00
repeated bind elapsed time 0.00 0.00 hard parse (sharing criteria) elapsed time 0.01 0.00
DB time 1,791.80 repeated bind elapsed time 0.00 0.00
background elapsed time 256.98 DB time 882.12
E O U ol 1235 packground cpu time 185.45 17.69
background IM trickle repopulation elapsed time 1.01 background elapsed time 161.75
background IM trickle repopulation cpu time 0.83 0.04 i '
total CPU time 2,025.20 total CPU time 1,048.48

Array processing uses
less CPU

ORACLE

REAL-WORLD PERFORMANCE

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Tax Demo — Run #3

DEMO

Config Threads/D Array Size File 1 File 2 File 3 File 4 File 5 Total

(Thread) oP Seconds Seconds Seconds Seconds Seconds Seconds

ADF 16 1 802

PL/SQL 16 1 178

PL/SQL 16 256 131

Set 8 N/A 14
ORACLE

ORACLE

REAL-WORLD PERFORMANCE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

DEMO

CPU Usage

CPU Seconds per Test by Tier

Blue is Apps Tier CPU

seconds
10000 -
[72]
©
g Tier
(&]
3 Red is DB Tier CPU Bl Aors
DB
2 seconds O]
O 5000 -
| | | | | | | |
ADF 1 ADF 4 ADF 16 PL/SQL 1 PL/SQL 1 PL/SQL 16 PL/SQL 16 Set-Based
Thread Threads Threads Thread Thread Threads Threads DoP=8
Array 256 Array 256
Config

ORACLE

REAL-WORLD PERFORMANCE

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

DEMO

CPU Usage
CPU per 1k
Config Threads/DoP Array Size DB CPU Apps Tier CPU Total CPU Rows
Processed
ADF 1 1 3,583.18 9,464.46 13,047.65 3.45
ADF 4 1 3,476.46 7,330.17 11,454.98 3.03
ADF 16 1 4,608.08 8,039.97 12,699.14 3.35
PL/SQL 1 1 1,775.04 0.00 1,775.04 0.47
Pl/sQL 1 256 863.03 0.00 863.03 0.22
PL/SQL 16 1 2,351.20 0.00 2,351.20 0.62
PL/SQL 16 256 1,755.99 0.00 1,755.99 0.46
Set 16 N/A 101.22 0.00 101.22 0.02
ORACLE

ORACLE

REAL-WORLD PERFORMANCE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

CPU Usage

CPU Seconds per 1k Rows

3 -
7]
2
[e]
-
X
-
S
o
o
=
o
(&)
1 -
0 -
1 1 1
ADF 1 ADF 16 ADF 4
Thread Threads Threads

ORACLE

REAL-WORLD PERFORMANCE

ORACLE

1
PL/SQL 1
Thread

Test

1 1 1 1
PL/SQL 1 PL/SQL 16 PL/SQL 16 Set-Based
Thread Threads Threads DoP=8

Array 256 Array 256

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

DEMO

Config

|| ADF 1 Thread

|| ADF 16 Threads

|| ADF 4 Threads

I PuisaL 1 Thread

I PL/sQL 1 Thread Array 256
I PLisaL 16 Threads

|| PL/SQL 16 Threads Array 256
| Set-Based DoP=8

Set-Based Processing
Exploit the power of SQL

* Techniques include:
— Database Parallelism
— DDL instead of DML
— Multi-tableinserts with Common Table Expressions
— Window functions for row labeling

* Faster, uses less CPU, and easier to code and support
* Set-based SQL moves processing to data — Oracle DB is a processing engine

* With Set-Based SQL, we can choose our performance with DoP

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Embracing Set-Based SQL

* Once you're in PL/SQL opportunities for set-based SQL open up naturally

—You, the developer, write the SQL
— Layered software architectures usually prevent this as, by design, SQL is invisible

* Very often there is opportunity to embrace set-based SQL

— You specify the “what” and Oracle figures out “how”
* Speedup of development

— Replacing row-by-row with set-based SQL also delivers execution speedups
* Comingfrom row-by-row Layered architectures, 10X-100X or more often achievable

* You move business logic into SQL (rich SQL)

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Original Example: Batch Program

* Able to rewrite using set-based multi-table insert statements (MTI)

* Row-by-row Java/JDBC used : 437 DB-CPU seconds
* Row-by-row PLSQL used : 204 DB-CPU seconds
* Set-based used : 7 DB-CPU seconds

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Original Results Visualized

700

Java/JDBC |PL/SQL row-by-row |PL/SQL set-based .
DB-CPU 437 204 7
APP-CPU| 217 0 (n/a) 0 (n/a) 200
Total 654 204 7

— " Almost 100X

Just think about thﬂ

200 -

* |f you choose Layered, you've committed to:
— Having to purchase a lot of hardware and DB licenses
— Blaming database for your performance/scalability 0 -

issues

Whereas you should blame your chosen architecture

100 -

W APP-CPU

m DB-CPU

Java/JDBC PLSQL row-

by-row

PLSQL set-
based

ORACLE

ORACLE

REAL-WORLD PERFORMANCE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Big Picture

» Big Picture

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Performance with Layered Architectures
From database's perspective ...

ORACLE 1 20 ORACLE

DATABASE

(DB time) + ("Time not in database")

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

[Elapsed time =

Performance with Layered Architectures
From apps server's perspective ...

C ORACLE'
WebLogic Server

ORACLE
DATABASE

LY
LTS
"
"y
“a
"y
e
a

Elapsed time =
(JVM time) + ("Time not in JVM")

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Performance with Layered Architectures

DATABASE WebLogic Server

OS/Thread/Proc -

Elapsed = 13.4 minutes
ORACLE" ORACLE
REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

16 Thread ADF Example What if your network is
ysIow?]
ORACLE 12(,‘ ORACLE

*
. *
--

DBT =4.8 mins

Performance with Layered Architectures
16 Thread ADF Example

DATABASE

ORACLE 125 ORACLE"

.. ~ WebLogic Server

0

DBT =4.8 mins

Elapsed = 13.4 minutes
ORACLE" ORACLE
REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

-~

When you
move data to
processing
(row-by-row),
there's a
penalty

&

o

J

Performance with Layered Architectures
16 Thread ADF Example

DATABASE

ORAC e1 2(; ORACLE
..) WebLogic Server

.0
0
-

DBT =4.8 mins

Elapsed = 13.4 minutes
ORACLE" ORACLE
REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

/How much \

control do you
have over
performance
with the
penalty for
each row?

(& J

Performance with Layered Architectures
Where is the Leverage?

4)

Where do you start?

\ J

Executions | Elansed Time per Exec (s) | %Total
316. 77 3,777,402 0.00 6.80 36.42 0.12 gn7jdbsw9mcfm JDBC Thin Client DELETE FROM prematch_buy where...
288.07 | 3,777,501 0.00 6.19 34.59 0.05 15gbk6ss8agkh JDBC Thin Client DELETE FROM prematch_sell wher...
263.29 | 3,777,369 0.00 566 36.14 0.15 7tmbmtzdb8kpu JDBC Thin Client INSERT INTO matched (CODE, SO...
247.46 3,777,509 0.00 532 36.33 0.79 7Tmhs1jc6jzhnj JDBC Thin Client SELECT PrematchSellEO.CODE, Pr...
238.00 | 3,776,857 0.00 511 33.06 3.052jbwsbn8mzzst JDBC Thin Client INSERT INTO prematch_buy (COD...
236.36 | 3,776,369 0.00 5.08 32.84 2.34 9q3c6x15qfb9r JDBC Thin Client INSERT INTO prematch_sell (CO...
200.39 | 7,551,830 0.00 430 28.19 0.09 9gjmmvu0t3brk JDBC Thin Client SELECT MatchedEO.CODE, Matched...

In the land of
incremental gains

ORACLE

REAL-WORLD PERFORMANCE

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Performance with Layered Architectures
Where is the Leverage?

4)
Bl Where do you start? N

Memory Filter Column Stack Trace
— Stack Trace Sample Count Percentage
| > = oracle.jbo.expr.Jlinput.findNextWord(boolean, boolean) k) 1,251 4.27%
d - » = oracle.core.cjdl.logging.ODLLogger.isLoggable(Level) 1,034 3.53%
b = oracle.jdbc.driver.TACMAREngineStream.value2Buffer(int, byte[], byte) 946 3.23%
Code ¥ = oracle.jbo.ExprEval.setExprStr(String, JIParserHelper) 917 3.13%
f,\)\ ¥ = oracle.jbo.ExprEval.<init>(String, int, JIParserHelper) 917 3.13%
@,\ ¥ = oracle.joo.RowMatch. <init>(String, JIParserHelper) 917 3.13%
4 ¥ = oracle.jbo.serverViewObjectimpl.processViewCriteriaForRowMatch() 917 3.13%
> = oracle.jbo.server.ViewObjectimpl.processCacheFilters() 464 1.58%
Threads v = oracle.jbo.server.ViewObjectimpl.buildWhereClause(StringBuffer, int) 453 1.54%
¥ = oracle.jbo.server.ViewObjectimpl.buildQueryForUnionCriteria(StringBuffer, int, boolean, boolean, boolean, StmtWithBindVars, String, Strin... 453 1.54%
@ ¥ = oracle.jbo.serverViewObjectimpl.buildQuery(int, boolean, String, String, String, int) 453 1.54%
¥ =% oracle.jbo.serverViewObjectimpl.buildQuery(int, boolean) 453 1.54%
¥ » oracle.jbo.serverViewObjectimpl.getPreparedStatement(int, boolean(]) 453 1.54%
o v % oracle.jbo.server.QueryCollection.buildResultSet(ViewObjectimpl, int) 453 1.54%
¥ = oracle.jbo.server.QueryCollection.executeQuery(Object[], int) 453 1.54%
£ ¥ = oracle.jbo.server.ViewObjectimpl.executeQueryForCollection(Object, Object(], int) 453 1.54%
¥ = oracle.jbo.serverViewRowSetimpl.execute(boolean, boolean, boolean, boolean, boolean, Row(]) 453 1.54%
¥ = oracle.jbo.serverViewRowSetimpl.execute(boolean, boolean) 453 1.54%
System » = oracle.jbo.serverViewRowSetlteratorimpl.ensureRefreshed(boolean, boolean, boolean, Row(]) 227 0.77%
¥ = oracle.jbo.serverViewRowSetimpl.getRowCount() 226 0.77%
¥ = oracle.jbo.server.ViewObjectimpl.getRowCount() 226 0.77%
¥ = oracle.apps.rwp.tax.uiModel.applicationModule.taxMatchAMImpl.prematch_sell(String, Integer, String, String) 226 0.77%

WebLods « oracle.apps.rwp.tax.uiModel.applicationModule.taxMatchAMImpI$1$2.run()
eblogic -
9 % java.lang.Thread.run() 226 0.77%

ORACLE

REAL-WORLD PERFORMANCE

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Performance with Layered Architectures
Throwing application parallelism at the problem

DB Time(s):
DB CPU(s):

resecond L portaneacion, | percec | percal

0.00
0.0 0.00

0.47
0.16

sy IS this the point you

[Ove rprocise\dj buffer busy waits

[Contentﬁ

ORACLE

cursor: pin S

ORACLE

REAL-WORLD PERFORMANCE

external table read

latch: redo allocation

latch: ges resource hash list
library cache: mutex X

log file switch (checkpoint incomplete) 932 659.6
latch: cache buffers chains
enq: TX - index contention

start bottom-up

948,177 33 .

199,936 29 anaIyS|s?

205,559 16445 8.00 7.7 Other
94,334 977.3 10.36 4.6 Other

239,359 894.2 3.74 4.2 Concurrency

707.68 3.1 Configuration

115,010 414 .1 3.60 1.9 Concurrency
45,531 354.4 7.78 1.7 Concurrency
72,982 238.2 3.26 1.1 Concurrency

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Performance with Layered Architectures
Throwing application parallelism at the problem

AdminServer-diagnostic.log:[2016-09-15T14:03:23.210-07:00] [AdminServer] [NOTIFICATION] [DFW-40101] [oracle.dfw.incident]
[tid: TaxMatchl25] [userId: <anonymous>] [ecid: 47e4c839-a6ff-4dc8-b4£6-7155f95baca7-00000023,0:4:1548] [APP: RwpTax2] An
incident has been signalled with the incident facts: [problemKey=DFW-99998

[oracle.jbo.pool.ResourcePoolException] [oracle.jbo.pool.ResourcePool.allocateResource] [RwpTax2] incidentSource=SYSTEM
incidentTime=Thu Sep 15 14:03:23 PDT 2016 errorMessage=DFW-99998 executionContextId=null]
AdminServer-diagnostic.log:[2016-09-15T14:03:23.210-07:00] [AdminServer] [WARNING] [DFW-40125] [oracle.dfw.incident]

[tid: TaxMatchl25] [userId: <anonymous>] [ecid: 47e4c839-a6ff-4dc8-b4£6-7155£f95baca7-00000023,0:4:1548] [APP: RwpTax2]
incident flood controlled with Problem Key "DFW-99998

[oracle.jbo.pool.ResourcePoolException] [oracle.jbo.pool.ResourcePool.allocateResource] [RwpTax2]"
e21b0a54-30£2-4028-bf18-al1c62871c7d4-00000373,0:2:11:1556284] [errid: 349] [detaillLoc: /nfs-
shared/wls/home/user_projects/domains/rwp_domain/servers/AdminServer/adr/diag/ofm/rwp_domain/AdminServer/incident/incdir _
349] [probKey: DFW-99997 [java.lang.OutOfMemoryError]] [APP: RwpTax2] incident 349 created with problem key "DFW-99997

-

What do you do (Can you really choose)
when you run out of
application server your performance
resources? :
g this way? y

o

ORACLE

REAL-WORLD PERFORMANCE

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Concluding Thoughts

D Concluding Thoughts

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Remarks

The implication of all this
SQL isn’t accidental
“My enterprise application is too complex”

A

Beware of risks if you go SmartDB

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

1: The Implication Of All This, Visualized

La
[App App App App App] ye
server server server server server re
d
Databaseis always
500 TX/Sec first bottleneck
. S
With SmartDB you can
process more with M
500 TX/Sec same DB hardware A
With SmartDB you R
can process same T
Set-based SQL.. with less DB licenses D
B

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

1: The Implication Of All This
* Moving poor SQL into PL/SQL likely frees up 50% of your DB-CPU time

* Moving business logic from layered sw-architecture in JVM'’s, to
straightforward PL/SQL, makes it require 10X less CPU

* Your question 1: does the 10X less CPU fit in the 50% freed up DB-CPU’s?

In case, “no”:
* Your question 2: where can | embrace set-based SQL to make it “yes”?

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

2: SQL Isn’t Accidental, I1t’s Fundamental

* There are nearly always opportunities for your business logic to be pushed
into set-based SQL

* Why is this the case?

* There’s a fundamental reason for this...

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

2: SQL Isn’t Accidental, It’s Fundamental

/" Us, living in the real { Logic and set theory are based on }

world, using natural natural language, particularly the

language to reason parts of it that deal with reasoning
with each other

@ bout the real wor

So we reason in the model using
language that was based on how

, based on logic and set theory]

Ergo, SQL fundamentally fits what e MBI el

we reason in the real-world Wi reeeen i
: set-based, SQL
we want to achieve

Application: model of a
part of the real world
about which we want to
reason using computers

ORACI—G REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

3: My Enterprise Application Is Too Complex

* “| cannot do my application logic in SQL and PL/SQL”
— Both SQL and PL/SQL have become incrediblyrich

— Given our context (transactional enterprise applications)and SQLs fundamental
fit, it would be strange if your logic cannot be dealt with

* Don’t underestimate width and depth of SQL and PL/SQL

* And, all DB features surrounding these two languages

* Counterpoint— be prepared for your developers to say “l don’t want to
move my application logic ...”

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

3: Often This Is The Issue When SQL + PL/SQL Are Dismissed

* A mindshift is required:

* You need to start thinking in “processing data”

* Instead of “interacting with objects that have behavior”

* A relational database design should be your frame of reference

* And not an object oriented domain model

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

4: Beware Of Risks If You Go SmartDB

* Make sure you involve people
—Who've done this before
—Who think “processing data”
— Who are experienced in designing databases
—Who know full power of SQL and PL/SQL

* If you’re new to this: obviously start small

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

4: Reach Out to Active SmartDB Community

* Oracle Technology Network, Database, SQL and PL/SQL forums:
https://community.oracle.com/welcome

* Ask The Oracle Masters:
https://asktom.oracle.com

* Oracle Dev Gym:
https://devgym.oracle.com/

e Stack Overflow:

https://stackoverflow.com/questions/tagged/plsql
https://stackoverflow.com/questions/tagged/oracle

* Oracle-l maillist:
https://www.freelists.org/list/oracle-I

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Conclusions
Can You Choose Your Performance with Layered Architectures?

Layered architectures don't let you choose your performance

* Row-by-row algorithms across multiple stacks = more time, less throughput

* This per-row tax multiplies as data volume increases

* You can only control a small piece — the piece of code or infrastructure you own
* Increased CPU usage, which increases software/hardware/Cloud costs

» Easy to run into contention / bottlenecks and difficult to resolve — usually
involves complex application code change

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Conclusions
Moving Processingto Data

Layered architectures drive data to processing, not processing to data

Data shippedto Apps tier at unit of lowest common denominator—a row (or column!)

Database viewed as persistence layer, not processing engine

Equatesto:

— Lots of round trips, lots of stack traversal, thread/process sleep/wakeup/start/stop
— ... means more CPU and less efficient, and

— ... both performance and resource usage dependenton # of rows/columns

Increased CPU = higher software/hardware/Cloud

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Conclusions

Incremental Performance Improvements

Layered architectures foster a bottom-up performance culture

* Layer owners only have visibility / responsibility over small piece of puzzle
* Owners spend lots of time "tuning" their piece, chasing percentage points
* Lack of ability to innovate

* "Race to the bottom" mindset — expert in each layer focuses on their layer
and nobody looks holistically

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

If We Have Time. ...

* Going #SmartDB, or
* Connections and Connection Pools (it’s relevant, | promise)

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Questions

ORACLE

REAL-WORLD PERFORMANCE

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Integrated Cloud

Applications & Platform Services

ORACLE" ORACLE
REAL-WORLD PERFORMANCE

