
Getting the most out of your Oracle
12.2+ Optimizer (i.e. The Brain)
Janis Griffin

Senior DBA / Performance Evangelist

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Who Am I

• Senior DBA / Performance Evangelist for SolarWinds
• Janis.Griffin@solarwinds.com
• Twitter® - @DoBoutAnything
• Current – 25+ Years in Oracle®, DB2®, ASE, SQL Server®, MySQL®
• DBA and Developer

• Specialize in Performance Tuning
• Review Database Performance for Customers and Prospects
• Common Question – How do I tune it?

mailto:Janis.Griffin@solarwinds.com

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Agenda

• 12.2 Optimizer
• Adaptive Plans
• Adaptive Statistics

• Dynamic Statistics / Statistic Feedback review
• New Sql Plan Directives features explained
• New Optimizer Statistics Advisor

• SQL Plan Management - What’s new?
• How it coexists with adaptive plans
• How to control baselines

• Approximate Query Processing
• What is it
• When and how to use it

In The Beginning… Optimizer Overview

• Rule Based Optimizer (Version < 7.3)
• Rules based on 17 possible access paths

• Only one execution plan chosen and only simple rewrites of ‘OR’ to ‘Union ALL’

• Cost Based Optimizer (Version > = 7.3)
• Multiple plans generated with estimated cost of IO/CPU

• Plan with lowest cost chosen

• Allows for hash joins, histograms, partitioning and parallel queries
• More complex rewrites and transformations
• Required statistics gathering and plans changed

• 8.1.7, Stored outlines to control plan changes
• 9.2, Dynamic sampling of statistics
• 10g, SQL Profiles / Tuning Advisor

• DBMS_SQLTUNE – Costs $$$
• Oracle 11, Adaptive cursor sharing / SQL plan management / SQL patches
• Oracle 12.1, Adaptive optimizer – could only turn on or off feature

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Adaptive Optimizer 12.2

• Two new parameters
• Adaptive statistics turned off (default)

• SQL plan directives
• Statistics feedback for joins
• Performance feedback
• Dynamic sampling for parallel query

Adaptive Query Optimizer

Adaptive Plans
Adaptive
Statistics

Join
Methods

Parallel
Distribution

Dynamic
Statistics

Automatic
Reoptimization

Sql Plan
Directives

Bitmap Index
Pruning

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

How the Optimizer Works

Default Plan sent to Row Source Generator

Query Transformer – rewrites

query to be more efficient

Plan Generator – creates

multiple plans using different

access paths & join types.

Plan with lowest cost is chosen

Estimator – looks at

selectivity, cardinality & cost

Data Dictionary

Schema Definition

Statistics

Parsed Query (from Parser)

Transformed Query

Query + Estimates

Init.ora parameter to control behavior:

OPTIMIZER_FEATURES_ENABLED

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

OR Expansion

View Merging

Predicate Pushing

Subquery Unnesting

Query Rewrite with

Materialized Views

Star Transformation

In-Memory Aggregation

Table Expansion

Join Factorization

https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Execution Plan

• Show the sequence of operations performed to run SQL Statement
• Order of the tables referenced in the statements

• Access method for each table in the statement
• INDEX
• INLIST ITERATOR
• TABLE ACCESS
• VIEW

• Join method in accessing multiple tables
• HASH JOIN
• MERGE JOIN
• NESTED LOOPS

• Data manipulations
• CONCATENATION
• COUNT
• FILTER
• SORT

• Statistic Collectors
• New in 12C

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Execution Plan

• Optimizer instruments default plan with statistics collector (SC)
• SC buffers a portion of rows coming into each sub-plan on initial execution

• Optimizer computes inflection points
• Determines optimal join type
• At runtime

• Works only on:
• Join Methods

• Nested loops and hash joins

• Parallel Distribution Method

• No adaptation occurs
• If initial join is sort merge join

Optimizer Computes Inflection Points (IPs)

• IPs are statistics where two plan choices are equally good

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

CBO trace or

10053 event

(see appendix)

Optimizer Computes Inflection Points – cont.

• NLJ vs. HJ plans are equally good
• When cardinality = 8.48

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Nested Loop

Join

Hash

Join

Order_Items

Table Scan

Statistics

Collector

Product

Index Scan

Product

Table Scan

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

How To Identify Adaptive Plans

• New columns in V$SQL:
• IS_RESOLVED_ADAPTIVE_PLAN

• If ‘Y’, the plan was adapted & is the final plan
• If ‘N’, the plan is adaptive

• But final plan has not been selected
• If NULL, the plan is non-adaptive

• IS_REOPTIMIZABLE is for next execution
• Y - the next execution will trigger a reoptimization
• R – has reoptimization info

• But won’t trigger due to reporting mode
• N -the child cursor has no reoptimization info

alter (system / session) set optimizer_adaptive_reporting_only=TRUE;

Why Plans Changes

• Execution plans can change as underlying inputs to optimizer change
• Same Sql – Different Schemas

• Different table sizes / statistics / indexes

• Same Sql – Different Costs
• Data volume & Statistic Changes over time
• Bind variable types and values
• Initialization parameters (set globally or session level)
• Adaptive Cursor Sharing – 11G

• V$SQL - IS_BIND_SENSITIVE: optimizer peeked –plan may change
• V$SQL - IS_BIND_AWARE: ‘Y’ after query has been marked bind sensitive

• Adaptive Plans / Statistics – 12C

• V$SQL_SHARED_CURSOR
• Can give clues to why plan changed
• 70 columns showing mismatches /differences
• Hard to view
• Script, ‘shared_proc.sql’ in appendix

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

V$SQL_SHARED_CURSOR

• Shared_proc.sql script in appendix

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Explain Plans

are blind to

bind variables

Adaptive

Reporting

Only Mode

Get Real Execution Plan (reporting_only)

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Get Real Execution Plan

• Optimizer Mismatch

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Adaptive Cursor Sharing

• V$SQL_CS_SELECTIVITY (BIND AWARE)

• V$SQL_CS_HISTOGRAM
• Summary of monitoring
• Three buckets (S/M/L)

• V$SQL_CS_STATISTICS
• Show rows processed
• Empty in 12.2?

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

:b1 = 1000000.5

:b1 = 150.0

:b1 = 1.05

Parallel Distribution Method

• Optimizer must distribute data across all parallel processes
• Parallel queries are useful for sorts, aggregation & join operations

• Optimizer chooses between broadcast or hybrid hash (NEW in 12c)
• Chosen method depends on number of rows and Degree of Parallelism (DOP)

• Hybrid hash, if rows > than threshold
• Broadcast, if rows < than threshold
• Threshold is defined as 2 X DOP

• Optimizer decides final data distribution method during each execution time
• Different from adaptive joins which are limited to first execution only
• Statistic collectors are inserted in front of the parallel server processes

• On producer side of the operation

• Hybrid hash distribution can help with data skew
• Potential performance problem if few parallel processes distribute many rows

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Parallel Distribution - Hybrid Hash Example

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

• Alter session set optimizer_adaptive_statistics = TRUE;

\

• Other parameters
• parallel_degree_policy (Manual)

• Can be Adaptive or Auto

• parallel_adaptive_multi_user
• parallel_degree_limit
• parallel_min_time_threshold

• v$pq_tqstat
• Valid only in current session
• Shows message traffic

• At table queue level

Bitmap Index Pruning (Star Schemas)

• Adaptive plans will prune out insufficient bitmap indexes
• STAR_TRANSFORMATION_ENABLED parameter must be enabled (TRUE)

• Default is FALSE

• Hidden parameter: _optimizer_strans_adaptive_pruning
• see appendix for script to get all 12.2 hidden optimizer parameters

• If optimizer generates a star transformation plan
• Needs to decide which bitmap indexes to use

• If too many indexes, some may not reduce the numbers of rows returned
• Can cause unnecessary cost and overhead

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

US DOT - On-time Performance

http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time

Bitmap Index Pruning

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Adaptive Statistics: Quality of Plan = Quality of Statistics

• Optimizer can re-optimize a query several times
• Learning more info and further improving the plan

• Dynamic statistics
• Automatic reoptimization

• Statistics feedback
• Performance feedback

• Sql plan directives

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

What’s wrong

with these

pictures?

Dynamic Statistics

• Augment missing or insufficient base table statistics
• Table / index block counts
• Table / join cardinalities (estimated number of rows)
• Join column statistics
• GROUP BY statistics

• Are gathered during the parse stage
• Uses recursive SQL to scan a random sample of table blocks
• Statistics gathered are not as high a quality as DBMS_STATS

• Due to sampling

• Controlled by dynamic sampling init.ora parameter
• OPTIMIZER_DYNAMIC_SAMPLING
• New in 12.1 - level 11

• Automatically controls the creation of dynamic statistics

• Results are stored to minimize performance impact
• 12.1 - In Server Result Cache
• 12.2 - As SQL Plan Directive

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

alter session set OPTIMIZER_DYNAMIC_SAMPLING = 11;

Dynamic Statistics Example

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Estimates

2X off!

Notes:

Parse time takes longer.

Results are persisted &

used elsewhere

Statistics Feedback

• Optimizer enables monitoring for statistics feedback when
• Missing statistics, inaccurate statistics, or complex predicates

• Such as multiple conjunctive or disjunctive filter predicates on a table

• After 1st execution, estimates are compared with actual rows
• If they differ significantly, optimizer stores correct estimates for future use

• Stored as OPT_ESTIMATE hints in V$SQL_REOPTIMIZATION_HINTS
• Can create a SQL PLAN DIRECTIVE for other SQL statements

• If they differ, the cursor is marked IS_REOPTIMIZABLE
• IS_REOPTIMIZABLE column in V$SQL is updated to ‘Y’
• Cursor will not be used again

• After 1st execution, optimizer disables statistics collectors

• Next execution will incur a hard parse
• Optimizer uses the statistics found during 1st execution to determine better plan

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Statistics Feedback Example

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Statistics Feedback Example – Cont.

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Performance Feedback

• Automatically improves the degree of parallelism
• Init.ora parameter, PARALLEL_DEGREE_POLICY = ’ADAPTIVE’

• On 1st execution, the optimizer decides
• Whether to execute the statement in parallel
• The degree of parallelism based on estimates

• After 1st execution, optimizer compares
• Estimates with actual performance statistics

• e.g. CPU Time
• i.e. PARALLEL_MIN_TIME_THRESHOLD

• If significantly different, the statement
• Cursor is marked for reparsing
• New execution statistics are stored as feedback

• Following executions use the performance feedback to determine DOP
• If PARALLEL_DEGREE_POLICY not set, statistics feedback may change DOP

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Performance Feedback – Strange Behavior

• OPTIMIZER_ADAPTIVE_STATISTICS
• Set to FALSE by default
• Can set to TRUE to enable adaptive parallel distribution

• Dynamic sampling for parallel query
• Statistics feedback
• Performance feedback

• PARALLEL_DEGREE_POLICY
• Set to MANUAL by default
• Must be ADAPTIVE

• To enable Performance feedback

• Check hidden parameter _OPTIMIZER_PERFORMANCE_FEEDBACK
• Must be set to ALL
• http://www.oaktable.net/content/activating-and-deactivating-performance-feedback

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

http://www.oaktable.net/content/activating-and-deactivating-performance-feedback

Performance Feedback

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

select tq_id , cast(server_type as varchar2(10)) as server_type

, instance , cast(process as varchar2(8)) as process, num_rows

, round(ratio_to_report(num_rows)

over (partition by dfo_number, tq_id, server_type) * 100) as "%"

, cast(rpad('#', round(num_rows * 10 / nullif(max(num_rows)

over (partition by dfo_number, tq_id, server_type), 0)), '#') as varchar2(10)) as

graph

, round(bytes / 1024 / 1024) as mb

, round(bytes / nullif(num_rows, 0)) as "bytes/row"

from v$pq_tqstat

order by dfo_number , tq_id , server_type desc , instance , process;

SQL Plan Directives

• Are additional instructions for missing column group statistics or histograms
• The optimizer performs dynamic sampling on directive

• Until statistics are gathered for the column group or extension

• Not tied to a specific sql statement – defined on a query expression
• Can be used by similar queries (e.g. city, state, zip in where clause)

• Are created in shared_pool & periodically written to the SYSAUX tablespace
• DBA_SQL_PLAN_DIRECTIVES
• DBA_SQL_PLAN_DIR_OBJECTS
• DBMS_SPD package

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

SELECT TO_CHAR(d.directive_id) dir_id,

o.owner, o.object_name, o.subobject_name col_name,

o.object_type, d.type,d.state,d.reason

FROM dba_sql_plan_directives d, dba_sql_plan_dir_objects o

WHERE d.directive_id = o.directive_id

AND o.owner IN ('SOE') ORDER BY 1,2,3,4,5;

SQL Plan Directives

• Must enable adaptive statistics
• New directive type in 12.2 - DYNAMIC_SAMPLING_RESULTS

• Results are stored for future use

• Need to turn on feature to automatically create extended statistics
• exec DBMS_STATS.SET_PARAM ('AUTO_STAT_EXTENSIONS','ON');

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

12c Statistic Gathering

• Automatically gathered
• Index, insert append, CTAS

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Understand Statistics Gathering

• GATHER_*_STATS procedures have many parameters
• Consider taking the default values
• exec dbms_stats.gather_schema_stats(‘SOE’);

• New 12.2 optimizer statistics advisor
• Based on 23 predefined rules

• V$STATS_ADVISOR_RULES
• Run using DBMS_STATS

• View tasks in DBA_ADVISOR_TASKS

• Makes recommendations on collecting stats
• Can generate scripts for statistics gathering

• Uses statistic gathering best practices

• Advisor scripts on next slides
GET_PREFS function

DBMS_STATS package

• Rewritten in 11g

• A Faster & better AUTO_SAMPLE_SIZE

• 100% in less time & more accurate than 10%

estimate

• Avoid using ESTIMATE_PERCENT

select

dbms_stats.get_prefs('PREFERENCE_OVERRIDES_PARAMETER')

from dual;

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Optimizer Statistics Advisor

1. Create task 2. Define filters>

3. Execute task

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

EXEC DBMS_STATS.DROP_ADVISOR_TASK('STAT_ADVICE');

DECLARE

task_name VARCHAR2(100);

results VARCHAR2(32767);

BEGIN

task_name := 'STAT_ADVICE';

results := DBMS_STATS.CREATE_ADVISOR_TASK(task_name);

END;

/

select task_name, advisor_name, created, status from

dba_advisor_tasks where advisor_name = 'Statistics Advisor‘;

filter1 CLOB; -- disable advisor on all objects

filter2 CLOB; -- enable advice on SOE.ORDER_LINE

filter3 CLOB; -- disable rule AvoidDropRecreate

filter4 CLOB; -- enable rule UseGatherSchemaStats

BEGIN

filter1 := DBMS_STATS.CONFIGURE_ADVISOR_OBJ_FILTER(

task_name => 'STAT_ADVICE',

stats_adv_opr_type => 'EXECUTE',

rule_name => NULL,

ownname => NULL,

tabname => NULL,

action => 'DISABLE');

filter2 := DBMS_STATS.CONFIGURE_ADVISOR_OBJ_FILTER(

task_name => 'STAT_ADVICE',

stats_adv_opr_type => 'EXECUTE',

rule_name => NULL,

ownname => 'SOE',

tabname => 'ORDER_LINE',

action => 'ENABLE');

filter3 := DBMS_STATS.CONFIGURE_ADVISOR_RULE_FILTER(

task_name => 'STAT_ADVICE',

stats_adv_opr_type => 'EXECUTE',

rule_name => 'AvoidDropRecreate',

action => 'DISABLE');

filter4 := DBMS_STATS.CONFIGURE_ADVISOR_RULE_FILTER(

task_name => 'STAT_ADVICE',

stats_adv_opr_type => 'EXECUTE',

rule_name => 'UseGatherSchemaStats',

action => 'ENABLE');

END;

/

DECLARE

task_name VARCHAR2(100);

results VARCHAR2(32767);

BEGIN

task_name := 'STAT_ADVICE';

results := DBMS_STATS.EXECUTE_ADVISOR_TASK(task_name);

END;

/

Optimizer Statistics Advisor – Cont.

4. Report task 6. Display script>

5. Generate script

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

set pagesize 1000

set linesize 132

set long 1000000

select dbms_stats.report_advisor_task('STAT_ADVICE',null,'text','all','all') as report from dual;

VAR script CLOB

DECLARE

task_name VARCHAR2(100);

BEGIN

task_name := 'STAT_ADVICE';

:script := DBMS_STATS.SCRIPT_ADVISOR_TASK(task_name);

END;

/

set linesize 132

set long 100000

set pagesize 0

set longchunksize 100000

set serveroutput on

DECLARE

v_len NUMBER(10);

v_offset NUMBER(10) :=1;

v_amount NUMBER(10) :=10000;

BEGIN

v_len := DBMS_LOB.getlength(:script);

WHILE (v_offset < v_len)

LOOP

DBMS_OUTPUT.PUT_LINE(DBMS_LOB.SUBST

R(:script,v_amount,v_offset));

v_offset := v_offset + v_amount;

END LOOP;

END;

/

Optimizer Statistics Advisor Report

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Optimizer Statistics Advisor Script

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

SQL Plan Management (Baselines)

• 12.1 SPM/Baseline Changes
• SPM evolve advisor is an Auto Task (SYS_AUTO_SPM_EVOLVE_TASK)

• Runs nightly in maintenance window
• Automatically runs the evolve process for non-accepted plans in SPM
• DBA views results of nightly task using DBMS_SPM.REPORT_AUTO_EVOLVE_TASK
• Can Manage via OEM or DBMS_AUTO_TASK_ADMIN

• Still can manually evolve an unaccepted plan using OEM or DBMS_SPM
• DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE has been deprecated but still there

• 12.2 New ability to limit which SQL statements are captured using filters
alter system set optimizer_capture_sql_plan_baselines=true;
exec dbms_spm.configure(‘AUTO_CAPTURE_PARSING_SCHEMA_NAME’,’SOE’, true);

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

SQL Plan Management

• 12.2 Can manually capture baselines from AWR
• DBMS_SPM.LOAD_PLANS_FROM_AWR

• Takes begin and end snapshots

• How SPM works with adaptive plans
• If auto-capture is enabled

• Only the final plan is captured in baseline
• When unaccepted adaptive plans evolve, the optimizer considers all subplans

• If 1.5x better than existing baseline, the plan is accepted
• Accepted plans are never adaptive

• How SPM works with adaptive cursor sharing (ACS)
• If auto-capture is enabled, only one plan will be accepted

• Recommendation is to manually load and accept all possible plans
• So ACS will work
• Otherwise the cursor will not be marked bind sensitive

• Because the baseline will prevent it

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Approximate Query Processing

• Used for approximate ‘count distinct’ values and adds percentile aggregation
• Allows for faster processing of large data sets

• Not exact but usually within 95%+ range

• Three new parameters – alter system/session
• approx_for_aggregation Default=FALSE

• Can be overridden by the next 2 parameters
• If true, sets approx_for_percentile=ALL

• approx_for_count_distinct Default=FALSE
• Overrides exact COUNT DISTINCT clause

• approx_for_percentile Default=NONE
• Overrides MEDIAN clause (PERCENTILE_CONT)
• Values can be PERCENTILE_CONT, PERCENTILE_DISC, and ALL

• Can be used without any changes to existing code
• Replaces exact functions with SQL functions that return approximate results

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

New SQL functions in 12.2

• Approximate query functions
• APPROX_COUNT_DISTINCT (Introduced in 12.1)
• APPROX_COUNT_DISTINCT_DETAIL
• APPROX_COUNT_DISTINCT_AGG
• TO_APPROX_COUNT_DISTINCT
• APPROX_MEDIAN
• APPROX_PERCENTILE
• APPROX_PERCENTILE_DETAIL
• APPROX_PERCENTILE_AGG
• TO_APPROX_PERCENTILE

• Also in 12.2, support for approximate query functions
• For materialized views and subsequent query rewrites

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Approximate SQL Example

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

95% accurate

Approximate SQL Example Without Changing Code

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Why is it exact?

Need to

set both

Approximate Percentile Example Without Changing Code

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

99.68% accurate

Summary

• The 12.2 Optimizer is getting smarter and easier to control
• Two new parameters

• Optimizer_adaptive_plans (true)
• New feature: bitmap index pruning

• Optimizer_adaptive_statistics (false)
• Controls SQL plan directives, statistics feedback for joins,
• Performance feedback, dynamic sampling for parallel query

• Plans can and do change
• V$SQL_SHARED_CURSOR can help find out the why

• New 12.2 optimizer statistics advisor can help fine-tune statistics gathering
• SQL plan management

• Can filter which SQL gets captured for baselines

• Approximate query processing
• Consider this for analytic queries

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

The SolarWinds, SolarWinds & Design, Orion, and THWACK trademarks are the exclusive

property of SolarWinds Worldwide, LLC or its affiliates, are registered with the U.S.

Patent and Trademark Office, and may be registered or pending registration in other

countries. All other SolarWinds trademarks, service marks, and logos may be common

law marks or are registered or pending registration. All other trademarks mentioned

herein are used for identification purposes only and are trademarks of (and may be

registered trademarks) of their respective companies.

Thank You!!!

www.solarwinds.com/dpa-download/

Resolve Performance Issues quickly—Free Trial

• Try Database Performance Analyzer FREE for 14 days

• Improve root cause of slow performance

o Quickly identify root cause of issues that impact end-user
response time

o See historical trends over days, months, and years

o Understand impact of VMware® performance

o Agentless architecture with no dependence on Oracle Packs,
installs in minutes

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

https://www.solarwinds.com/dpa-download/

Appendix

• CBO trace or 10053 event

• Edit *&trc_name*.trc

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

-- trc.sql

alter session set tracefile_identifier='&trc_name';

exec dbms_sqldiag.dump_trace(p_sql_id=>'&sql_id',p_child_number=>&child,p_component=>'Compiler',p_file_id=>'');

Appendix

• 10053 Event TreeViewer UI (2011 but still works)
• https://jonathanlewis.files.wordpress.com/2011/12/tvzip1.doc

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

https://jonathanlewis.files.wordpress.com/2011/12/tvzip1.doc

Appendix

--shared_proc.sql --formats output from v$sql_shared_cursor

set serverout on size 1000000
Declare

c number;
col_cnt number;
col_rec dbms_sql.desc_tab;
col_value varchar2(4000);
ret_val number;

Begin
c := dbms_sql.open_cursor;
dbms_sql.parse(c,'select q.sql_text, s.* from v$sql_shared_cursor s, v$sql q where s.sql_id = q.sql_id

and s.child_number = q.child_number and q.sql_id = ''&1''', dbms_sql.native);
dbms_sql.describe_columns(c, col_cnt, col_rec);
for idx in 1 .. Col_cnt loop

dbms_sql.define_column(c, idx, col_value, 4000);
end loop;
ret_val := dbms_sql.execute(c);
while(dbms_sql.fetch_rows(c) > 0) loop

for idx in 1 .. Col_cnt loop
dbms_sql.column_value(c, idx, col_value);
if col_rec(idx).col_name in ('SQL_ID', 'ADDRESS', 'CHILD_ADDRESS','CHILD_NUMBER', 'SQL_TEXT', 'REASON') then

dbms_output.put_line(rpad(col_rec(idx).col_name, 30) || ' = ' || col_value);
elsif col_value = 'Y' then

dbms_output.put_line(rpad(col_rec(idx).col_name, 30) || ' = ' || col_value);
end if;

end loop;
dbms_output.put_line('--');

end loop;
dbms_sql.close_cursor(c);

End;
/

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Appendix

• 191 _optimizer_* hidden parameters
• OPTIMIZER_ADAPTIVE_PLANS control:

• _OPTIMIZER_NLJ_HJ_ADAPTIVE_JOIN
• _PX_ADAPTIVE_DIST_METHOD
• _OPTIMIZER_STRANS_ADAPTIVE_PRUNING

• OPTIMIZER_ADAPTIVE_STATISTICS controls:
• _OPTIMIZER_GATHER_FEEDBACK
• _OPTIMIZER_USE_FEEDBACK
• _OPTIMIZER_DSDIR_USAGE_CONTROL
• _OPTIMIZER_USE_FEEDBACK_FOR_JOIN
• _OPTIMIZER_ADS_FOR_PQ

• Many others not listed

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

-- hidden.sql

COLUMN ksppinm FORMAT A50

COLUMN ksppstvl FORMAT A50

SELECT

ksppinm,

ksppstvl

FROM

x$ksppi a,

x$ksppsv b

WHERE

a.indx=b.indx

AND

substr(ksppinm,1,1) = '_'

and ksppinm like '_opt%'

ORDER BY ksppinm;

