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Who Am I

• Senior DBA / Performance Evangelist for SolarWinds
• Janis.Griffin@solarwinds.com
• Twitter® - @DoBoutAnything
• Current – 25+ Years in Oracle®, DB2®, ASE, SQL Server®, MySQL®
• DBA and Developer

• Specialize in Performance Tuning
• Review Database Performance for Customers and Prospects
• Common Question – How do I tune it?

mailto:Janis.Griffin@solarwinds.com
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Agenda

• 12.2 Optimizer 
• Adaptive Plans
• Adaptive Statistics 

• Dynamic Statistics / Statistic Feedback review
• New Sql Plan Directives features explained
• New Optimizer Statistics Advisor 

• SQL Plan Management - What’s new?
• How it coexists with adaptive plans
• How to control baselines

• Approximate Query Processing
• What is it
• When and how to use it



In The Beginning… Optimizer Overview

• Rule Based Optimizer  (Version < 7.3)
• Rules based on 17 possible access paths 

• Only one execution plan chosen and only simple rewrites of ‘OR’ to ‘Union ALL’

• Cost Based Optimizer  (Version > = 7.3) 
• Multiple plans generated with estimated cost of IO/CPU

• Plan with lowest cost chosen

• Allows for hash joins, histograms, partitioning and parallel queries
• More complex rewrites and transformations
• Required statistics gathering  and plans changed

• 8.1.7, Stored outlines to control plan changes
• 9.2, Dynamic sampling of statistics
• 10g, SQL Profiles / Tuning Advisor

• DBMS_SQLTUNE – Costs $$$
• Oracle 11,  Adaptive cursor sharing / SQL plan management / SQL patches
• Oracle 12.1, Adaptive optimizer – could only turn on or off feature
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Adaptive Optimizer 12.2

• Two new parameters
• Adaptive statistics turned off (default)

• SQL plan directives
• Statistics feedback for joins
• Performance feedback
• Dynamic sampling for parallel query

Adaptive Query Optimizer

Adaptive Plans 
Adaptive 
Statistics

Join 
Methods

Parallel 
Distribution

Dynamic 
Statistics

Automatic 
Reoptimization

Sql Plan 
Directives

Bitmap  Index 
Pruning
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How the Optimizer Works

Default Plan sent to Row Source Generator

Query Transformer – rewrites 

query to be more efficient

Plan Generator – creates 

multiple plans using different 

access paths & join types.  

Plan with lowest cost is chosen

Estimator – looks at 

selectivity, cardinality & cost

Data Dictionary

Schema Definition

Statistics

Parsed Query (from Parser)

Transformed Query

Query + Estimates

Init.ora parameter to control behavior:

OPTIMIZER_FEATURES_ENABLED
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OR Expansion

View Merging

Predicate Pushing

Subquery Unnesting

Query Rewrite with 

Materialized Views

Star Transformation

In-Memory Aggregation

Table Expansion

Join Factorization

https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
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Execution Plan

• Show the sequence of operations performed to run SQL Statement
• Order of the tables referenced in the statements

• Access method for each table in the statement
• INDEX 
• INLIST ITERATOR 
• TABLE ACCESS 
• VIEW

• Join method in accessing multiple tables
• HASH JOIN
• MERGE JOIN
• NESTED LOOPS

• Data manipulations
• CONCATENATION 
• COUNT 
• FILTER 
• SORT 

• Statistic Collectors
• New in 12C
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Execution Plan

• Optimizer instruments default plan with statistics collector (SC)
• SC buffers a portion of rows coming into each sub-plan on initial execution

• Optimizer computes inflection points
• Determines optimal join type
• At runtime

• Works only on: 
• Join Methods

• Nested loops and hash joins

• Parallel Distribution Method

• No adaptation occurs
• If initial join is sort merge join



Optimizer Computes Inflection Points (IPs)

• IPs are statistics where two plan choices are equally good
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CBO trace or 

10053 event

(see appendix)



Optimizer Computes Inflection Points – cont. 

• NLJ vs. HJ plans are equally good 
• When cardinality = 8.48

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

Nested Loop

Join

Hash

Join

Order_Items

Table Scan

Statistics

Collector

Product 

Index Scan

Product

Table Scan
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How To Identify Adaptive Plans

• New columns in V$SQL:
• IS_RESOLVED_ADAPTIVE_PLAN

• If ‘Y’, the plan was adapted & is the final plan
• If ‘N’, the plan is adaptive 

• But final plan has not been selected
• If NULL, the plan is non-adaptive

• IS_REOPTIMIZABLE is for next execution
• Y - the next execution will trigger a reoptimization
• R – has reoptimization info

• But won’t trigger due to reporting mode
• N -the child cursor has no reoptimization info

alter (system / session) set optimizer_adaptive_reporting_only=TRUE;



Why Plans Changes

• Execution plans can change as underlying inputs to optimizer change 
• Same Sql – Different Schemas

• Different  table sizes / statistics / indexes

• Same Sql – Different Costs
• Data volume & Statistic Changes over time
• Bind variable types and values
• Initialization parameters (set globally or session level)
• Adaptive Cursor Sharing – 11G

• V$SQL - IS_BIND_SENSITIVE: optimizer peeked –plan may change
• V$SQL - IS_BIND_AWARE:  ‘Y’ after query has been marked bind sensitive

• Adaptive Plans / Statistics – 12C

• V$SQL_SHARED_CURSOR
• Can give clues to why plan changed
• 70 columns showing mismatches /differences 
• Hard to view 
• Script, ‘shared_proc.sql’ in appendix
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V$SQL_SHARED_CURSOR

• Shared_proc.sql script in appendix 
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Explain Plans 

are blind to 

bind variables

Adaptive 

Reporting 

Only Mode



Get Real Execution Plan (reporting_only) 
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Get Real Execution Plan 

• Optimizer Mismatch
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Adaptive Cursor Sharing

• V$SQL_CS_SELECTIVITY (BIND AWARE)

• V$SQL_CS_HISTOGRAM
• Summary of monitoring
• Three buckets (S/M/L)

• V$SQL_CS_STATISTICS
• Show rows processed
• Empty in 12.2?
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:b1 = 1000000.5

:b1 = 150.0

:b1 = 1.05



Parallel Distribution Method

• Optimizer must distribute data across all parallel processes
• Parallel queries are useful for sorts, aggregation & join operations

• Optimizer chooses between broadcast or hybrid hash (NEW in 12c)
• Chosen method  depends on number of rows and Degree of Parallelism (DOP)

• Hybrid hash, if rows > than threshold
• Broadcast, if rows < than threshold
• Threshold is defined as 2 X DOP     

• Optimizer decides final data distribution method during each execution time
• Different from adaptive joins which are limited to first execution only 
• Statistic collectors are inserted in front of the parallel server processes 

• On producer side of the operation

• Hybrid hash distribution can help with data skew
• Potential performance problem if few parallel processes distribute many rows 

© 2018 SolarWinds Worldwide, LLC. All rights reserved.



Parallel Distribution - Hybrid Hash Example
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• Alter session set optimizer_adaptive_statistics = TRUE;

\

• Other parameters
• parallel_degree_policy (Manual)

• Can be Adaptive or Auto

• parallel_adaptive_multi_user
• parallel_degree_limit
• parallel_min_time_threshold

• v$pq_tqstat
• Valid only in current session
• Shows message traffic

• At table queue level



Bitmap Index Pruning (Star Schemas) 

• Adaptive plans will prune out insufficient bitmap indexes
• STAR_TRANSFORMATION_ENABLED parameter must be enabled (TRUE) 

• Default is FALSE 

• Hidden parameter: _optimizer_strans_adaptive_pruning
• see appendix for script to get  all 12.2 hidden optimizer parameters

• If optimizer generates a star transformation plan 
• Needs to decide which bitmap indexes to use

• If too many indexes, some may not reduce the numbers of rows returned
• Can cause unnecessary cost and overhead
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US DOT - On-time Performance

http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time


Bitmap Index Pruning 
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Adaptive Statistics: Quality of Plan = Quality of Statistics

• Optimizer can re-optimize a query several times
• Learning more info and further improving the plan

• Dynamic statistics
• Automatic reoptimization

• Statistics feedback
• Performance feedback

• Sql plan directives

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

What’s wrong 

with these 

pictures?



Dynamic Statistics

• Augment missing or insufficient base table statistics  
• Table / index block counts
• Table / join cardinalities (estimated number of rows)
• Join column statistics
• GROUP BY statistics

• Are gathered during the parse stage
• Uses recursive SQL to scan a random sample of table blocks
• Statistics gathered are not as high a quality as DBMS_STATS

• Due to sampling

• Controlled by dynamic sampling init.ora parameter  
• OPTIMIZER_DYNAMIC_SAMPLING
• New in 12.1 - level 11 

• Automatically controls the creation of dynamic statistics

• Results are stored to minimize performance impact
• 12.1 - In Server Result Cache
• 12.2 - As SQL Plan Directive  
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alter session set OPTIMIZER_DYNAMIC_SAMPLING = 11;



Dynamic Statistics Example
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Estimates 

2X off!

Notes: 

Parse time takes longer.

Results are persisted &

used elsewhere 



Statistics Feedback

• Optimizer enables monitoring for statistics feedback when
• Missing statistics, inaccurate statistics, or complex predicates 

• Such as multiple conjunctive or disjunctive filter predicates on a table

• After 1st execution, estimates are compared with actual rows
• If they differ significantly, optimizer stores correct estimates for future use

• Stored as OPT_ESTIMATE hints in V$SQL_REOPTIMIZATION_HINTS 
• Can create a SQL PLAN DIRECTIVE for other SQL statements 

• If they differ, the cursor is marked IS_REOPTIMIZABLE 
• IS_REOPTIMIZABLE column in V$SQL is updated to ‘Y’ 
• Cursor will not be used again

• After 1st execution, optimizer disables statistics collectors

• Next execution will incur a hard parse
• Optimizer uses the statistics found during 1st execution to determine better plan
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Statistics Feedback Example
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Statistics Feedback Example – Cont.
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Performance Feedback

• Automatically improves the degree of parallelism 
• Init.ora parameter,  PARALLEL_DEGREE_POLICY = ’ADAPTIVE’

• On 1st execution,  the optimizer decides
• Whether to execute the statement in parallel 
• The degree of parallelism based on estimates

• After 1st execution, optimizer compares 
• Estimates with actual performance statistics

• e.g. CPU Time
• i.e. PARALLEL_MIN_TIME_THRESHOLD

• If significantly different, the statement 
• Cursor is marked for reparsing 
• New execution statistics are stored as feedback

• Following executions use the performance feedback to determine DOP
• If PARALLEL_DEGREE_POLICY not set, statistics feedback may change DOP

© 2018 SolarWinds Worldwide, LLC. All rights reserved.



Performance Feedback – Strange Behavior

• OPTIMIZER_ADAPTIVE_STATISTICS 
• Set to FALSE by default
• Can set to TRUE to enable adaptive parallel distribution

• Dynamic sampling for parallel query
• Statistics feedback 
• Performance feedback

• PARALLEL_DEGREE_POLICY
• Set to MANUAL by default
• Must be ADAPTIVE 

• To enable Performance feedback

• Check hidden parameter _OPTIMIZER_PERFORMANCE_FEEDBACK
• Must be set to ALL
• http://www.oaktable.net/content/activating-and-deactivating-performance-feedback
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http://www.oaktable.net/content/activating-and-deactivating-performance-feedback


Performance Feedback

© 2018 SolarWinds Worldwide, LLC. All rights reserved.

select tq_id , cast(server_type as varchar2(10)) as server_type

, instance , cast(process as varchar2(8)) as process, num_rows

, round(ratio_to_report(num_rows)

over (partition by dfo_number, tq_id, server_type) * 100) as "%"

, cast(rpad('#', round(num_rows * 10 / nullif(max(num_rows)

over (partition by dfo_number, tq_id, server_type), 0)), '#') as varchar2(10)) as 

graph

, round(bytes / 1024 / 1024) as mb

, round(bytes / nullif(num_rows, 0)) as "bytes/row"

from  v$pq_tqstat

order by dfo_number , tq_id , server_type desc , instance , process;



SQL Plan Directives

• Are additional instructions for missing column group statistics or histograms
• The optimizer performs dynamic sampling on directive

• Until statistics are gathered for the column group or extension

• Not tied to a specific sql statement – defined on a query expression
• Can be used by similar queries (e.g.  city, state, zip in where clause)

• Are created in shared_pool & periodically written to the SYSAUX tablespace
• DBA_SQL_PLAN_DIRECTIVES                        
• DBA_SQL_PLAN_DIR_OBJECTS
• DBMS_SPD package 
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SELECT TO_CHAR(d.directive_id) dir_id, 

o.owner, o.object_name, o.subobject_name col_name, 

o.object_type, d.type,d.state,d.reason

FROM dba_sql_plan_directives d, dba_sql_plan_dir_objects o

WHERE d.directive_id = o.directive_id

AND o.owner IN ('SOE') ORDER BY 1,2,3,4,5;



SQL Plan Directives

• Must enable adaptive statistics 
• New directive type in 12.2 - DYNAMIC_SAMPLING_RESULTS

• Results are stored for future use

• Need to turn on feature to  automatically create extended statistics
• exec DBMS_STATS.SET_PARAM ('AUTO_STAT_EXTENSIONS','ON'); 
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12c Statistic Gathering

• Automatically gathered
• Index, insert append, CTAS
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Understand Statistics Gathering

• GATHER_*_STATS procedures have many parameters
• Consider taking the default values
• exec dbms_stats.gather_schema_stats(‘SOE’);

• New 12.2 optimizer statistics advisor
• Based on 23 predefined rules

• V$STATS_ADVISOR_RULES
• Run using DBMS_STATS 

• View tasks in DBA_ADVISOR_TASKS 

• Makes recommendations on collecting stats
• Can generate scripts for statistics gathering

• Uses statistic gathering best practices

• Advisor scripts on next slides
GET_PREFS function 

DBMS_STATS package

• Rewritten in 11g 

• A Faster & better AUTO_SAMPLE_SIZE 

• 100% in less time & more accurate than 10% 

estimate

• Avoid using ESTIMATE_PERCENT

select 

dbms_stats.get_prefs('PREFERENCE_OVERRIDES_PARAMETER') 

from dual;
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Optimizer Statistics Advisor

1. Create task                         2. Define filters>

3. Execute task
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EXEC DBMS_STATS.DROP_ADVISOR_TASK('STAT_ADVICE');

DECLARE

task_name VARCHAR2(100);

results VARCHAR2(32767);

BEGIN

task_name := 'STAT_ADVICE';

results := DBMS_STATS.CREATE_ADVISOR_TASK(task_name);

END;

/

select task_name, advisor_name, created, status from 

dba_advisor_tasks where advisor_name = 'Statistics Advisor‘;

filter1 CLOB;  -- disable advisor on all objects

filter2 CLOB; -- enable advice on SOE.ORDER_LINE

filter3 CLOB; -- disable rule AvoidDropRecreate

filter4 CLOB; -- enable rule UseGatherSchemaStats

BEGIN

filter1 := DBMS_STATS.CONFIGURE_ADVISOR_OBJ_FILTER(

task_name => 'STAT_ADVICE',

stats_adv_opr_type => 'EXECUTE',

rule_name => NULL,

ownname => NULL,

tabname => NULL,

action => 'DISABLE' );

filter2 := DBMS_STATS.CONFIGURE_ADVISOR_OBJ_FILTER(

task_name => 'STAT_ADVICE',

stats_adv_opr_type => 'EXECUTE',

rule_name => NULL,

ownname => 'SOE',

tabname => 'ORDER_LINE',

action => 'ENABLE' );

filter3 := DBMS_STATS.CONFIGURE_ADVISOR_RULE_FILTER(

task_name => 'STAT_ADVICE',

stats_adv_opr_type => 'EXECUTE',

rule_name => 'AvoidDropRecreate',

action => 'DISABLE' );

filter4 := DBMS_STATS.CONFIGURE_ADVISOR_RULE_FILTER(

task_name => 'STAT_ADVICE',

stats_adv_opr_type => 'EXECUTE',

rule_name => 'UseGatherSchemaStats',

action => 'ENABLE' );

END;

/

DECLARE

task_name VARCHAR2(100);

results VARCHAR2(32767);

BEGIN

task_name := 'STAT_ADVICE';

results := DBMS_STATS.EXECUTE_ADVISOR_TASK(task_name);

END;

/



Optimizer Statistics Advisor – Cont.

4. Report task                              6. Display script>

5. Generate script
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set pagesize 1000

set linesize 132

set long 1000000

select dbms_stats.report_advisor_task('STAT_ADVICE',null,'text','all','all') as report  from dual;

VAR script CLOB

DECLARE

task_name VARCHAR2(100);

BEGIN

task_name := 'STAT_ADVICE';

:script := DBMS_STATS.SCRIPT_ADVISOR_TASK(task_name);

END;

/

set linesize 132

set long 100000

set pagesize 0

set longchunksize 100000

set serveroutput on

DECLARE

v_len NUMBER(10);

v_offset NUMBER(10) :=1;

v_amount NUMBER(10) :=10000;

BEGIN

v_len := DBMS_LOB.getlength(:script);

WHILE (v_offset < v_len)

LOOP

DBMS_OUTPUT.PUT_LINE(DBMS_LOB.SUBST

R(:script,v_amount,v_offset));

v_offset := v_offset + v_amount;

END LOOP;

END;

/



Optimizer Statistics Advisor Report
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Optimizer Statistics Advisor Script
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SQL Plan Management (Baselines)

• 12.1 SPM/Baseline Changes 
• SPM evolve advisor is an Auto Task (SYS_AUTO_SPM_EVOLVE_TASK)

• Runs nightly in maintenance window 
• Automatically runs the evolve process for non-accepted plans in SPM 
• DBA views results of nightly task using DBMS_SPM.REPORT_AUTO_EVOLVE_TASK
• Can Manage via OEM or DBMS_AUTO_TASK_ADMIN

• Still can manually evolve an unaccepted plan using OEM or DBMS_SPM
• DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE has been deprecated but still there

• 12.2 New ability to limit which SQL statements are captured using filters
alter system set optimizer_capture_sql_plan_baselines=true;
exec dbms_spm.configure(‘AUTO_CAPTURE_PARSING_SCHEMA_NAME’,’SOE’, true);
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SQL Plan Management

• 12.2 Can manually capture baselines from AWR
• DBMS_SPM.LOAD_PLANS_FROM_AWR

• Takes begin and end snapshots

• How SPM works with adaptive plans
• If auto-capture is enabled

• Only the final plan is captured in baseline
• When unaccepted adaptive plans evolve, the optimizer considers all subplans

• If 1.5x better than existing baseline, the plan is accepted 
• Accepted plans are never adaptive

• How SPM works with adaptive cursor sharing (ACS)
• If auto-capture is enabled, only one plan will be accepted 

• Recommendation is to manually load and accept all possible plans 
• So ACS will work
• Otherwise the cursor will not be marked bind sensitive

• Because the baseline will prevent it
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Approximate Query Processing

• Used for approximate ‘count distinct’ values and adds percentile aggregation
• Allows for faster processing of large data sets

• Not exact but usually within 95%+ range

• Three new parameters – alter system/session 
• approx_for_aggregation Default=FALSE

• Can be overridden by the next 2 parameters
• If true, sets approx_for_percentile=ALL

• approx_for_count_distinct Default=FALSE
• Overrides exact COUNT DISTINCT clause

• approx_for_percentile Default=NONE
• Overrides MEDIAN clause (PERCENTILE_CONT)
• Values can be PERCENTILE_CONT, PERCENTILE_DISC, and ALL

• Can be used without any changes to existing code 
• Replaces exact functions with SQL functions that return approximate results
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New SQL functions in 12.2

• Approximate query functions
• APPROX_COUNT_DISTINCT (Introduced in 12.1)
• APPROX_COUNT_DISTINCT_DETAIL
• APPROX_COUNT_DISTINCT_AGG
• TO_APPROX_COUNT_DISTINCT
• APPROX_MEDIAN
• APPROX_PERCENTILE
• APPROX_PERCENTILE_DETAIL
• APPROX_PERCENTILE_AGG
• TO_APPROX_PERCENTILE

• Also in 12.2, support for approximate query functions
• For materialized views and subsequent query rewrites
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Approximate SQL Example
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95% accurate 



Approximate SQL Example Without Changing Code
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Why is it exact?

Need to 

set both



Approximate Percentile Example Without Changing Code
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99.68% accurate 



Summary

• The 12.2 Optimizer is getting smarter and easier to control
• Two new parameters 

• Optimizer_adaptive_plans (true)
• New feature: bitmap index pruning

• Optimizer_adaptive_statistics (false)
• Controls SQL plan directives, statistics feedback for joins,
• Performance feedback, dynamic sampling for parallel query

• Plans can and do change
• V$SQL_SHARED_CURSOR can help find out the why

• New 12.2 optimizer statistics advisor can help fine-tune statistics gathering
• SQL plan management

• Can filter which SQL gets captured for baselines

• Approximate query processing
• Consider this for analytic queries 
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www.solarwinds.com/dpa-download/

Resolve Performance Issues quickly—Free Trial

• Try Database Performance Analyzer FREE for 14 days

• Improve root cause of slow performance

o Quickly identify root cause of issues that impact end-user 
response time

o See historical trends over days, months, and years

o Understand impact of VMware® performance 

o Agentless architecture with no dependence on Oracle Packs, 
installs in minutes
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https://www.solarwinds.com/dpa-download/


Appendix

• CBO trace or 10053 event

• Edit *&trc_name*.trc
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-- trc.sql

alter session set tracefile_identifier='&trc_name';

exec dbms_sqldiag.dump_trace(p_sql_id=>'&sql_id',p_child_number=>&child,p_component=>'Compiler',p_file_id=>'');



Appendix

• 10053 Event TreeViewer UI (2011 but still works)
• https://jonathanlewis.files.wordpress.com/2011/12/tvzip1.doc
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Appendix

--shared_proc.sql --formats output from v$sql_shared_cursor

set serverout on size 1000000
Declare

c  number;
col_cnt number;
col_rec dbms_sql.desc_tab;
col_value varchar2(4000);
ret_val number;

Begin
c := dbms_sql.open_cursor;
dbms_sql.parse(c,'select q.sql_text, s.*  from v$sql_shared_cursor s, v$sql q where s.sql_id = q.sql_id

and s.child_number = q.child_number and q.sql_id = ''&1''', dbms_sql.native);
dbms_sql.describe_columns(c, col_cnt, col_rec);
for idx in 1 .. Col_cnt loop

dbms_sql.define_column(c, idx, col_value, 4000);
end loop;
ret_val := dbms_sql.execute(c);
while(dbms_sql.fetch_rows(c) > 0) loop

for idx in 1 .. Col_cnt loop
dbms_sql.column_value(c, idx, col_value);
if col_rec(idx).col_name in ('SQL_ID', 'ADDRESS', 'CHILD_ADDRESS','CHILD_NUMBER', 'SQL_TEXT', 'REASON') then

dbms_output.put_line(rpad(col_rec(idx).col_name, 30) || ' = ' || col_value);
elsif col_value = 'Y' then

dbms_output.put_line(rpad(col_rec(idx).col_name, 30) || ' = ' || col_value);
end if;

end loop;
dbms_output.put_line('--------------------------------------------------');

end loop;
dbms_sql.close_cursor(c);

End;
/
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Appendix

• 191 _optimizer_* hidden parameters
• OPTIMIZER_ADAPTIVE_PLANS  control:

• _OPTIMIZER_NLJ_HJ_ADAPTIVE_JOIN
• _PX_ADAPTIVE_DIST_METHOD 
• _OPTIMIZER_STRANS_ADAPTIVE_PRUNING

• OPTIMIZER_ADAPTIVE_STATISTICS controls:
• _OPTIMIZER_GATHER_FEEDBACK 
• _OPTIMIZER_USE_FEEDBACK
• _OPTIMIZER_DSDIR_USAGE_CONTROL
• _OPTIMIZER_USE_FEEDBACK_FOR_JOIN 
• _OPTIMIZER_ADS_FOR_PQ

• Many others not listed
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-- hidden.sql

COLUMN ksppinm FORMAT A50

COLUMN ksppstvl FORMAT A50

SELECT

ksppinm,

ksppstvl

FROM

x$ksppi a,

x$ksppsv b

WHERE

a.indx=b.indx

AND

substr(ksppinm,1,1) = '_'

and ksppinm like '_opt%'

ORDER BY ksppinm;


