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What is the Thick Data Paradigm?
Goals Related to APEX in this Paradigm

A Recipe for Implementing the Thick Data Paradigm with
APEX

Drawbacks
Discussion
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Overview

* PL/SQL * Application to APEX
— Bryn Llewellyn discussed — My focus is applying this
merits of PL/SQL and the concept to Oracle APEX
“thick database” approach — Consider the
* Later rebranded as SmartDB apex.oracle.com blueprints

— Toon Koppelaars set up
focus on performance
gains
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Correctness (and Security)

Performance
Ease of Development
Ease of Maintenance

Instantiating the Thick Database Paradigm to Ensure these
Goals are Met
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Recipe - Ingredients

* Thought and Planning

* At Least Two Schemas

* One Workspace (with its own schema)
* Tables

* Simple Views or Editioning Views

* Logic in PL/SQL packages

* Views with Instead Of Triggers*

* Patience

*We will have a lot of discussion on this.

E6LOC



Step 1: Consider Multi-User Concurrency (MUC)

Optimistic vs Pessimistic Locking

Will front end developers be responsible for managing
(MUC)?

How will you ensure correctness?

* For our example we will use an Object Version Number
(OVN) column

E6LOC



Step 2: Store the Data

Create a schema to hold data: GLOC_DATA
Create tables, indexes, sequences, triggers*

Name tables TABLE_ NAME_RT
— DEPARTMENT _RT
— EMPLOYEES_RT

Front End developers will never interact with the RT tables
Back End developers will never interact with the _RT tables
This schema is the domain of a good DBA

*If you like triggers. These may belong on the next slide.
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Step 3: Consider Edition Based Redefinition (EBR)

If using EBR, for each table create an editioning view.

If not using EBR, for each table create a standard view.

For my example | will create standard views.

Discussion — Should EBR be in the same schema as the
data?
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Step 4: Create Schema for Logic

* Create a schema for database (pl/sql) developers: GLOC_LOGIC
e Grant select on VIEWS (EVs) with grant option* to GLOC_LOGIC
* Grantinsert, update, delete on VIEWS (EVs) to GLOC_LOGIC

* Grant select on sequences GLOC_LOGIC

* Create private synonyms for DATA objects (optional)

* *The grant option will be used to allow front end developers access to
data

* Note: Take care to use CREATE OR REPLACE on views going forward. Do
NOT drop and recreate as synonyms become invalid.



Step 5: Create Logic

Discussion: Table APIs
Beyond TAPIs: Consider “Give everyone in IT a 5% raise”
Consider triggers vs APl logic (see insert code)

1 1d number := p 1id;
begin
if 1 1d 1s null then
1 1d := GLOC seqg.nextval();
end 1f;

Logic should be created in the LOGIC schema

E6LOC



Schema Design (so far)

* Grants to Views/EVs

* Select grants with grant

APIs
* Grants to Sequences

DATA

Views (CRUD) or EVs
Data Storage Objects (Tables, Indexes)
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Step 6: Create Workspace (Finally!)

Create APEX Workspace in another schema: GLOC

As GLOC_LOGIC
— grant execute on GLOC_ tapi to GLOC;

— Demonstrate: grant select on employee view;

Create synonyms as GLOC (optional)
— synonyms for GLOC_logic APIs;
— synonyms for GLOC_logic views

Note: GLOC could be completely unaware of GLOC_DATA, but the
APEX builder will show the views as owned by GLOC_DATA |



A Word About Security

* Security should be implemented at multiple levels
— Multiple Schemas
— Logic defined in packages in the database
— Access restricted to packages & Views

* SQL Injection, Post Data Tampering, etc.

— You can not rely on browsers and front end developers to secure
your data
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Schema Design

APEX Workspace
Packages Related to Ul Only

Logic
APIs

DATA
Views (CRUD) or EVs
Data Storage Objects (Tables, Indexes)

CRUD Grants to Select Views*
Grants to APIs

*We will replace this with a different
approach in a subsequent step (don’t
really do this!)

Grants to Views/EVs
Select grants with grant option
Grants to Sequences
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Step 7: Make the Workspace Work

* At this point, the workspace is functional, but lacks features
* What works

— Reports

— Forms Based on APIs owned by GLOC_LOGIC

— Interactive Grids with Select Only
* What doesn’t work

— Interactive Grids with Insert, Update or Delete

— Anything that references a ROWID

— Forms based upon a table or view (automated DML operations)
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Step 7: Make the Workspace Work (ctd)

* As the LOGIC user, Create Views with instead of triggers
create view employee crud as select * from employee

/

create or replace trigger employee crud bi intrg
instead of 1nsert on employee crud
begin
GLOC tapi.ins employee( p 1d => null
, P _emp name => :NEW.emp name
, p _department id => :NEW.department id
, p_salary => :NEW.salary) ;

end;
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Step 7: Make the Workspace Work (ctd)

* Unfortunately! In order to allow the GLOC user to insert,
update and delete into the new CRUD views, with “instead
of” triggers, the GLOC_LOGIC user must have grant option.

— Also, “instead of” triggers disappear when view is recreated
* GLOC_DATA must grant with grant option.

* GLOC_LOGIC grants select, insert, update, delete on CRUD
to GLOC
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Schema Design (revised)

* Grants to Views with Instead of Triggers
APEX Workspace * Grantsto APlIs
Packages Related to Ul Only

Logic * Grants to Views/EVs
APIs * Select grants with grant option
* Grants to Sequences

DATA
Views (CRUD) or EVs
Data Storage Objects (Tables, Indexes)
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* |f you are satisfied with APEX features that don’t require
Automated DML or updatable Interactive Grids, you can
stop at “select”

* If you want additional APEX automation, create views with
Instead Of triggers that exercise the logic in your APIs
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Unfortunately...

* Some things still don’t work
— Add row in Interactive Grids requires PK to be set in the IG
— Returning Value in Automated DML
— ROWIDs

* You can’t use the “returning” clause with a view with an
Instead Of trigger

* You can’t add a ROWID column, named ROWID, to a view
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Discussion

What is the value in separating schemas?
— Data

— Editioning Views

— Logic

— Presentation / Workspace

Do views with Instead Of triggers encourage bad practices?

When are the trade-offs just not worth it?

When would you create tables just for the presentation layer?

— Do these require similar levels of “correctness”?
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