PEX and SmartDB Step-
by-Step

153t

Hifa
T
: .

MAY 16”& 17,2018 é‘a-
=

— é‘ = CLEVELAND PUBLIC AUDITORIUM CLEVELAND, OHIO

| = f,“.. . annxmummm P NGOG ORGGioE

“lowd zad {1} —— r—
-%“E‘ £N - — ‘W- R Pt PR et LT gﬁﬁm
SR G K’ ::B xft.!*- . feag vos andve-w

A ISEINt!

Anton Nielsen

* Vice President — Insum

e anielsen@insum.ca

* Formerly
— President, C2 Consulting
— Technical Directory, Oracle
— Consultant, Coopers and Lybrand (now PWC)
— Captain/Scientist, US Air Force

E6LOC

mailto:anielsen@insum.ca

What is the Thick Data Paradigm?
Goals Related to APEX in this Paradigm

A Recipe for Implementing the Thick Data Paradigm with
APEX

Drawbacks
Discussion

E6LOC

Overview

* PL/SQL * Application to APEX
— Bryn Llewellyn discussed — My focus is applying this
merits of PL/SQL and the concept to Oracle APEX
“thick database” approach — Consider the
* Later rebranded as SmartDB apex.oracle.com blueprints

— Toon Koppelaars set up
focus on performance
gains

E6LOC

http://apex.oracle.com/

Correctness (and Security)

Performance
Ease of Development
Ease of Maintenance

Instantiating the Thick Database Paradigm to Ensure these
Goals are Met

E6LOC

Recipe - Ingredients

* Thought and Planning

* At Least Two Schemas

* One Workspace (with its own schema)
* Tables

* Simple Views or Editioning Views

* Logic in PL/SQL packages

* Views with Instead Of Triggers*

* Patience

*We will have a lot of discussion on this.

E6LOC

Step 1: Consider Multi-User Concurrency (MUC)

Optimistic vs Pessimistic Locking

Will front end developers be responsible for managing
(MUC)?

How will you ensure correctness?

* For our example we will use an Object Version Number
(OVN) column

E6LOC

Step 2: Store the Data

Create a schema to hold data: GLOC_DATA
Create tables, indexes, sequences, triggers*

Name tables TABLE_ NAME_RT
— DEPARTMENT _RT
— EMPLOYEES_RT

Front End developers will never interact with the RT tables
Back End developers will never interact with the _RT tables
This schema is the domain of a good DBA

*If you like triggers. These may belong on the next slide.

E6LOC

Step 3: Consider Edition Based Redefinition (EBR)

If using EBR, for each table create an editioning view.

If not using EBR, for each table create a standard view.

For my example | will create standard views.

Discussion — Should EBR be in the same schema as the
data?

E6LOC

Step 4: Create Schema for Logic

* Create a schema for database (pl/sql) developers: GLOC_LOGIC
e Grant select on VIEWS (EVs) with grant option* to GLOC_LOGIC
* Grantinsert, update, delete on VIEWS (EVs) to GLOC_LOGIC

* Grant select on sequences GLOC_LOGIC

* Create private synonyms for DATA objects (optional)

* *The grant option will be used to allow front end developers access to
data

* Note: Take care to use CREATE OR REPLACE on views going forward. Do
NOT drop and recreate as synonyms become invalid.

Step 5: Create Logic

Discussion: Table APIs
Beyond TAPIs: Consider “Give everyone in IT a 5% raise”
Consider triggers vs APl logic (see insert code)

1 1d number := p 1id;
begin
if 1 1d 1s null then
1 1d := GLOC seqg.nextval();
end 1f;

Logic should be created in the LOGIC schema

E6LOC

Schema Design (so far)

* Grants to Views/EVs

* Select grants with grant

APIs
* Grants to Sequences

DATA

Views (CRUD) or EVs
Data Storage Objects (Tables, Indexes)

E6L0C

Step 6: Create Workspace (Finally!)

Create APEX Workspace in another schema: GLOC

As GLOC_LOGIC
— grant execute on GLOC_ tapi to GLOC;

— Demonstrate: grant select on employee view;

Create synonyms as GLOC (optional)
— synonyms for GLOC_logic APIs;
— synonyms for GLOC_logic views

Note: GLOC could be completely unaware of GLOC_DATA, but the
APEX builder will show the views as owned by GLOC_DATA |

A Word About Security

* Security should be implemented at multiple levels
— Multiple Schemas
— Logic defined in packages in the database
— Access restricted to packages & Views

* SQL Injection, Post Data Tampering, etc.

— You can not rely on browsers and front end developers to secure
your data

E6LOC

Schema Design

APEX Workspace
Packages Related to Ul Only

Logic
APIs

DATA
Views (CRUD) or EVs
Data Storage Objects (Tables, Indexes)

CRUD Grants to Select Views*
Grants to APIs

*We will replace this with a different
approach in a subsequent step (don’t
really do this!)

Grants to Views/EVs
Select grants with grant option
Grants to Sequences

@6L0C

Step 7: Make the Workspace Work

* At this point, the workspace is functional, but lacks features
* What works

— Reports

— Forms Based on APIs owned by GLOC_LOGIC

— Interactive Grids with Select Only
* What doesn’t work

— Interactive Grids with Insert, Update or Delete

— Anything that references a ROWID

— Forms based upon a table or view (automated DML operations)

E6LOC

Step 7: Make the Workspace Work (ctd)

* As the LOGIC user, Create Views with instead of triggers
create view employee crud as select * from employee

/

create or replace trigger employee crud bi intrg
instead of 1nsert on employee crud
begin
GLOC tapi.ins employee(p 1d => null
, P _emp name => :NEW.emp name
, p _department id => :NEW.department id
, p_salary => :NEW.salary) ;

end;

E6LOC

Step 7: Make the Workspace Work (ctd)

* Unfortunately! In order to allow the GLOC user to insert,
update and delete into the new CRUD views, with “instead
of” triggers, the GLOC_LOGIC user must have grant option.

— Also, “instead of” triggers disappear when view is recreated
* GLOC_DATA must grant with grant option.

* GLOC_LOGIC grants select, insert, update, delete on CRUD
to GLOC

E6LOC

Schema Design (revised)

* Grants to Views with Instead of Triggers
APEX Workspace * Grantsto APlIs
Packages Related to Ul Only

Logic * Grants to Views/EVs
APIs * Select grants with grant option
* Grants to Sequences

DATA
Views (CRUD) or EVs
Data Storage Objects (Tables, Indexes)

E6L0C

* |f you are satisfied with APEX features that don’t require
Automated DML or updatable Interactive Grids, you can
stop at “select”

* If you want additional APEX automation, create views with
Instead Of triggers that exercise the logic in your APIs

E6LOC

Unfortunately...

* Some things still don’t work
— Add row in Interactive Grids requires PK to be set in the IG
— Returning Value in Automated DML
— ROWIDs

* You can’t use the “returning” clause with a view with an
Instead Of trigger

* You can’t add a ROWID column, named ROWID, to a view

E6LOC

Discussion

What is the value in separating schemas?
— Data

— Editioning Views

— Logic

— Presentation / Workspace

Do views with Instead Of triggers encourage bad practices?

When are the trade-offs just not worth it?

When would you create tables just for the presentation layer?

— Do these require similar levels of “correctness”?

E6LOC

