
MAY 16 & 17, 2018

CLEVELAND PUBLIC AUDITORIUM, CLEVELAND, OHIO

WWW.NEOOUG.ORG/GLOC

APEX and SmartDB Step-
by-Step

Anton Nielsen

• Vice President – Insum

• anielsen@insum.ca

• Formerly

– President, C2 Consulting

– Technical Directory, Oracle

– Consultant, Coopers and Lybrand (now PWC)

– Captain/Scientist, US Air Force

mailto:anielsen@insum.ca

Agenda

• What is the Thick Data Paradigm?

• Goals Related to APEX in this Paradigm

• A Recipe for Implementing the Thick Data Paradigm with
APEX

• Drawbacks

• Discussion

Overview

• PL/SQL

– Bryn Llewellyn discussed
merits of PL/SQL and the
“thick database” approach

• Later rebranded as SmartDB

– Toon Koppelaars set up
focus on performance
gains

• Application to APEX

– My focus is applying this
concept to Oracle APEX

– Consider the
apex.oracle.com blueprints

http://apex.oracle.com/

Goals

• Correctness (and Security)

• Performance

• Ease of Development

• Ease of Maintenance

• Instantiating the Thick Database Paradigm to Ensure these
Goals are Met

Recipe - Ingredients

• Thought and Planning
• At Least Two Schemas
• One Workspace (with its own schema)
• Tables
• Simple Views or Editioning Views
• Logic in PL/SQL packages
• Views with Instead Of Triggers*
• Patience

*We will have a lot of discussion on this.

Step 1: Consider Multi-User Concurrency (MUC)

• Optimistic vs Pessimistic Locking

• Will front end developers be responsible for managing
(MUC)?

• How will you ensure correctness?

• For our example we will use an Object Version Number
(OVN) column

Step 2: Store the Data

• Create a schema to hold data: GLOC_DATA
• Create tables, indexes, sequences, triggers*
• Name tables TABLE_NAME_RT

– DEPARTMENT_RT
– EMPLOYEES_RT

• Front End developers will never interact with the _RT tables
• Back End developers will never interact with the _RT tables
• This schema is the domain of a good DBA

*If you like triggers. These may belong on the next slide.

Step 3: Consider Edition Based Redefinition (EBR)

• If using EBR, for each table create an editioning view.

• If not using EBR, for each table create a standard view.

• For my example I will create standard views.

• Discussion — Should EBR be in the same schema as the
data?

Step 4: Create Schema for Logic

• Create a schema for database (pl/sql) developers: GLOC_LOGIC
• Grant select on VIEWS (EVs) with grant option* to GLOC_LOGIC
• Grant insert, update, delete on VIEWS (EVs) to GLOC_LOGIC
• Grant select on sequences GLOC_LOGIC

• Create private synonyms for DATA objects (optional)

• *The grant option will be used to allow front end developers access to
data

• Note: Take care to use CREATE OR REPLACE on views going forward. Do
NOT drop and recreate as synonyms become invalid.

Step 5: Create Logic

• Discussion: Table APIs

• Beyond TAPIs: Consider “Give everyone in IT a 5% raise”

• Consider triggers vs API logic (see insert code)

l_id number := p_id;

begin

if l_id is null then

l_id := GLOC_seq.nextval();

end if;

• Logic should be created in the LOGIC schema

Schema Design (so far)

• Grants to Views/EVs

• Select grants with grant
option

• Grants to Sequences

LOGIC
APIs

DATA

Views (CRUD) or EVs
Data Storage Objects (Tables, Indexes)

Step 6: Create Workspace (Finally!)

• Create APEX Workspace in another schema: GLOC

• As GLOC_LOGIC

– grant execute on GLOC_tapi to GLOC;

– Demonstrate: grant select on employee view;

• Create synonyms as GLOC (optional)

– synonyms for GLOC_logic APIs;

– synonyms for GLOC_logic views

• Note: GLOC could be completely unaware of GLOC_DATA, but the
APEX builder will show the views as owned by GLOC_DATA

A Word About Security

• Security should be implemented at multiple levels

– Multiple Schemas

– Logic defined in packages in the database

– Access restricted to packages & Views

• SQL Injection, Post Data Tampering, etc.

– You can not rely on browsers and front end developers to secure
your data

Schema Design

• CRUD Grants to Select Views*
• Grants to APIs

• *We will replace this with a different
approach in a subsequent step (don’t
really do this!)

• Grants to Views/EVs

• Select grants with grant option

• Grants to Sequences

APEX Workspace

Packages Related to UI Only

Logic

APIs

DATA
Views (CRUD) or EVs

Data Storage Objects (Tables, Indexes)

Step 7: Make the Workspace Work

• At this point, the workspace is functional, but lacks features

• What works
– Reports

– Forms Based on APIs owned by GLOC_LOGIC

– Interactive Grids with Select Only

• What doesn’t work
– Interactive Grids with Insert, Update or Delete

– Anything that references a ROWID

– Forms based upon a table or view (automated DML operations)

Step 7: Make the Workspace Work (ctd)

• As the LOGIC user, Create Views with instead of triggers
create view employee_crud as select * from employee

/

create or replace trigger employee_crud_bi_intrg

instead of insert on employee_crud

begin

GLOC_tapi.ins_employee(p_id => null

, p_emp_name => :NEW.emp_name

, p_department_id => :NEW.department_id

, p_salary => :NEW.salary);

end;

Step 7: Make the Workspace Work (ctd)

• Unfortunately! In order to allow the GLOC user to insert,
update and delete into the new CRUD views, with “instead
of” triggers, the GLOC_LOGIC user must have grant option.

– Also, “instead of” triggers disappear when view is recreated

• GLOC_DATA must grant with grant option.

• GLOC_LOGIC grants select, insert, update, delete on _CRUD
to GLOC

Schema Design (revised)

• Grants to Views with Instead of Triggers

• Grants to APIs

• Grants to Views/EVs

• Select grants with grant option

• Grants to Sequences

APEX Workspace

Packages Related to UI Only

Logic

APIs

DATA
Views (CRUD) or EVs

Data Storage Objects (Tables, Indexes)

Recap

• If you are satisfied with APEX features that don’t require
Automated DML or updatable Interactive Grids, you can
stop at “select”

• If you want additional APEX automation, create views with
Instead Of triggers that exercise the logic in your APIs

Unfortunately…

• Some things still don’t work

– Add row in Interactive Grids requires PK to be set in the IG

– Returning Value in Automated DML

– ROWIDs

• You can’t use the “returning” clause with a view with an
Instead Of trigger

• You can’t add a ROWID column, named ROWID, to a view

Discussion

• What is the value in separating schemas?

– Data

– Editioning Views

– Logic

– Presentation / Workspace

• Do views with Instead Of triggers encourage bad practices?

• When are the trade-offs just not worth it?

• When would you create tables just for the presentation layer?

– Do these require similar levels of “correctness”?

