

MAY 16 & 17, 2018

CLEVELAND PUBLIC AUDITORIUM, CLEVELAND, OHIO

WWW.NEOOUG.ORG/GLOC

Best Practices for Scaling and
Speeding Java Applications

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product direction.
It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver
any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and
timing of any features or functionality described for Oracle’s
products remains at the sole discretion of Oracle.

3

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

What’s New?

Speeding Up Java applications

Scaling the Java workloads

Questions

1

2

3

4

4

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Program Agenda with Highlight

What’s New?

Speeding Up Java applications

Scaling the Java workloads

Questions

1

2

3

4

5

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

What’s New?
Java Cloud Connectivity

‒ Wallet Support in JDBC for DB Cloud services & Key Store Service
(KSS)

- Better support for SSO wallets (auto-login)

- Auto-load and facilitates SSO wallets as trusted security provider.

- Key Store Service for Web Logic Server and other Java containers.

‒ JDBC support for a new ojdbc.properties configuration file

‒ JDBC Connection URL enhancements
- Support of MY_WALLET_LOCATION in the connect string

- Setting TNS_ADMIN and the JDBC properties file in the connect string

6

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

What’s New?

Java Support for HA & App Continuity

‒ Continuous Availability - Support for Auto-AC and Auto-drain

‒ DRCP + AC support in driver and UCP

‒ Support for concrete classes with Application Continuity

Java Support for Sharding

‒ UCP Support for RAC Affinity using Sharding Infrastructure

‒ New APIs to expose sharding routing to mid-tier (WLS)

‒ Sharding performance optimizations

7

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

What’s New?
Java Security

‒ JDBC support for HTTPS_PROXY and Websockets

‒ UCP Support for Secure Authentication

Performance Features

‒ Lightweight connection validation in driver and UCP

‒ UCP Performance optimizations

Datatypes

‒ JDBC support for RefCursor as In-bind for PL/SQL

‒ JDBC support for Object elements and the Index with index-by table

‒ OracleResultSetMetaData.isColumnJSON(int index)that
returns true if the column is a JSON column

8

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

• Fully transparent to applications

• Clustered to avoid SPOF

• Supports zero application downtime

• Optimizes database session usage

• Routes database traffic

• Enhances database security

9

Oracle Database Cloud Traffic Manager
(DCTM)

9

C++

Database Cloud
Traffic Manager

C

Databases

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Program Agenda with Highlight

What’s New?

Speeding Up Java applications

Scaling Java applications

Questions

1

2

3

4

10

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Speeding Up Java Applications

• Use Connection URL with
connection descriptors

• Use Universal Connection
Pool (UCP)

• Tune excessive hard
parsing

• Tune excessive soft
parsing

• Enforce result set caching

• Use LOB Best Practices

• Use Array operations
(Fetch, DML)

• Use Java in the Database

• Use Network compression
over WAN

• Use Memory
management best
practices

• Lightweight Connection
Validation

11

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Connection URL with Connection Descriptors
Oracle RAC with ADG

alias =(DESCRIPTION =

(CONNECT_TIMEOUT=90) (RETRY_COUNT=20)(RETRY_DELAY=3)
(TRANSPORT_CONNECT_TIMEOUT=3)

(ADDRESS_LIST =

(LOAD_BALANCE=on)

(ADDRESS = (PROTOCOL = TCP)(HOST=primary-scan)(PORT=1521)))

(ADDRESS_LIST =

(LOAD_BALANCE=on)

(ADDRESS = (PROTOCOL = TCP)(HOST=secondary-scan)(PORT=1521)))

(CONNECT_DATA=(SERVICE_NAME = gold-cloud)))

No reliance on DNS

Automatic Retries

ALWAYS use a SERVICE that is NOT DB/PDB name

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Connection URL – Best Practices
• Always use the latest version of JDBC driver and UCP

against current or earlier database version

• Do not mix up the versions of jars
– Use ojdbc8.jar, ucp.jar, and ons.jar from 12.2.0.1 version

• Always return connections to the pool for stable
connection usage, RLB, and planned draining

• Connection URL best practices
– Use one DESCRIPTION and more can cause long delays

– Set LOAD_BALANCE on per ADDRESS_LIST to balance SCANs

– DO NOT USE RETRY_COUNT without RETRY_DELAY

– DO not use Easy Connect URL – it has no HA capabilities

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Universal Connection Pool (UCP)

UCP Properties Description

setInitialPoolSize(), setMinPoolSize(),
setMaxPoolSize()

Set pool size based on database server
resources (number of cores)
Eg: MaxPoolSize = (rdbms-cores * n) / sum
(pools-per-mid-tier)

setTimoutCheckInterval(int)
setTimeToLiveConnectionTimeout() ,
setAbandonConnectionTimeout(),
setConnectionWaitTimeout(int)
setInactiveConnectionTimeout(int)

Set the Connection Timeout sufficiently high
enough to suite the application profile.

setMaxStatements() Enable Statement Caching – By default it is OFF

setFastConnectionFailoverEnabled(),
setONSConfiguration()

For High Availability Features. Enabled by
default in 12.2 UCP

The best configured connection pools result in higher throughput

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Excessive Hard Statement Parsing?

15

Hard parse: all steps involved in creating a SQL statement parse tree
Monitor hard parses with AWR/ADDM

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Tune excessive hard parsing

• Avoid Hard Parsing using Prepared Statement & Bind
Variables

Instead of:
String query = "SELECT EMPLOYEE_ID, LAST_NAME, SALARY FROM EMPLOYEES

WHERE EMPLOYEE_ID = " + generateNumber();

prepStmt = connection.prepareStatement(query);

resultSet = pstmt.executeQuery();

Change to:
String query = "SELECT EMPLOYEE_ID, LAST_NAME, SALARY FROM EMPLOYEES

WHERE EMPLOYEE_ID = ?";

prepStmt = connection.prepareStatement(query);

prepStmt.setInt(1, generateNumber());

resultSet = pstmt.executeQuery();

Fallback if application cannot be changed to use binds

init.ora parameter: CURSOR_SHARING={FORCE|SIMILAR|EXACT}

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Tune excessive soft parsing

• Enable Statement caching
– oracleDataSource.setImplicitCachingEnabled
(true)

• Choose the right cache size to best utilize the memory
– connection.setStatementCacheSize(10)

– Try to be closer to the number of most used statements

– Default statement cache size is 10

• Fallback if you cannot change the application to use
statement caching

– session_cached_cursors = 50

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Enforce result set caching
Server side result set caching
• Query not re-executed (until cache invalidated)

Client side result-set caching
• Shared across multiple connections from the same Data Source in the middle tier

• Faster access to frequently queried data. Enable with a SQL hint

– String query = "select /** result_cache */ first_name, last-name from employees where
employee_id < : 1”;

• Transparent invalidation through Query Change Notification

• Server side configuration (init.ora) to enable Result Set Caching

– CLIENT_RESULT_CACHE_SIZE – set to client result set cache size

– CLIENT_RESULT_CACHE_LAG – Specifies client result cache lag in minutes

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Use LOB best practices
• Convert LOB to LONG using
defineColumnType(index,type,size)

• Tune Session Data Unit (SDU) for large LOBs, XML, large Result
sets
– Max: 2MB (12c), 64K (11.2), 32K (pre-11.2)

– Set on both server and client side (SQLNet.ORA, TNSNAMES.ORA or URL)

– jdbc:oracle:thin:@(DESCRIPTION=(SDU=11280) (ADDRESS=(PROTOCOL=tcp)(HOST=myhost-
vip)(PORT=1521)) (CONNECT_DATA=(SERVICE_NAME=myorcldbservicename)))

– Improves performance, network utilization, and memory consumption

• Use PreFetching for small LOBs setLobPrefetchsize()

• Data Interface
– Streamlined mechanism for writing and reading the entire LOB contents using the standard

JDBC methods getString()and setBytes()

19

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Use SecureFiles LOBs
• Large reads/writes

– BASIC LOBs: internal buffer copy are expensive

– SECUREFILE LOBS: ”oracle.net.useZeroCopyIO” or “Vectored
i/o mechanism”

• Transparent to existing APIs
– Use public boolean isSecureFile() throws

SQLException to check whether or not
your BLOB or CLOB data uses Oracle SecureFile storage

• Compression, encryption, deduplication
setupSecureFile()

Blob.getBytes()

Fetch/Stream LOB data
directly (bypass internal
buffer)

ResultSet

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Array DML/Fetching/Prefetching

• Use array operations instead of single row operations

– Single row DMLs/fetches incur excessive roundtrips

– Default fetch size is 10

• Check if array size is large enough

• Some drivers support prefetching instead of array
fetching

Best Practices

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Array Fetching in Java

String query = "SELECT EMPLOYEE_ID, LAST_NAME FROM EMPLOYEES ”

+" WHERE EMPLOYEE_ID > ? ”

+" ORDER BY EMPLOYEE_ID”;

pstmt = connection.prepareStatement(query);

pstmt.setInt(1, generateNumber());

pstmt.setFetchSize(20);

rs = pstmt.executeQuery();

ResultSetMetaData rsmd = rs.getMetaData();

int columnCount = rsmd.getColumnCount();

while (rs.next()) {

for(int i = 1; i <= columnCount; ++i)

System.out.println(rsmd.getColumnName(i) +”

+rsmd.getColumnTypeName(i) +"]: "+rs.getString(i));

}

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Array DML in Java

String dml = "UPDATE EMPLOYEES SET SALARY = ?”

+" WHERE EMPLOYEE_ID = ?”;

pstmt = connection.prepareStatement(dml);

for(int i = 0; i < NUM_ROWS_TO_INSERT; ++i) {

int empId = getEmployeeId(employeeIdList);

pstmt.setInt(1, getNewSalary(empId));

pstmt.setInt(2, empId);

pstmt.addBatch();

}

pstmt.sendBatch();

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Client-side Java Database Access

24

JDBC

SQL

SQL

SQL

• Multiple Network
exchange for processing
each SQL statements

• Could lead to high
latency in WAN or
Cloud environments

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Java in the Database

25

JDBC
(internal)SQL

SQL

SQL

SQL

• One call for the
entire procedure

• Low network latency
in WAN or Cloud
environments

• Can be consumed
by SQL, PL/SQL or
any client

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Network Compression Over WAN
Mixed Data

26

• Query:
Select * from Table;

• Data:
Five columns
50 bytes per row
1 million rows

• Array Size:
5000

• Connection Property:
oracle.net.networkCompression=”on”

• Reduces the size of SDU
transmitted across the network

0

10

20

30

40

50

60

70

580 100 50 10

T
im

e
 (

s
e

c
)

Bandwidth (Mbps)

OFF

LOW

HIGH

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Memory Management Tips
• Memory issue is caused due to the buffers used to store

query results
– More dynamic buffer mechanism and return buffers to the cache when the

ResultSet is closed

– CREATE TABLE TAB (ID NUMBER(10), NAME VARCHAR2(40), DOB DATE)
ResultSet r = stmt.executeQuery(“SELECT ID, NAME, DOB FROM TAB”);

• Manage the memory used by buffers
– Form Queries carefully (Retrieve columns explicitly and avoid select * from

employees)

– Set the fetchsize carefully (avoid setting higher setFectchSize(10000))

• Use PreparedStatements and enable Implicit Statement
Caches

• Control the memory heap of JVM using –Xmx or –Xms

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Lightweight Connection Validation
• Checks only the underlying socket health

• Performs a faster validation by sending an empty data
packet to DB and doesn’t wait to receive it back.
Successful send indicates that socket is alive.

• Two ways to enable lightweight connection validation

– Enable this with a system property
oracle.jdbc.defaultConnectionValidation=

“SOCKET”

– Use a new overloaded method
OracleConnection.isValid(ConnectionValidat

ion.SOCKET, timeout)

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Program Agenda with Highlight

What’s New?

Speeding Up Java Applications

Scaling Java Applications

Questions

1

3

2

4

29

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Scaling Java Applications

• Using Server Side Connection Pool (DRCP)

• Horizontally Scaling Java Workload

• Using Runtime Load Balancing (RLB)

30

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 31

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Using Server side connection Pool (DRCP)
• DRCP is the server side connection pool shared across

many mid-tiers

• Enabling DRCP on the server side

– dbms_connection_pool.start_pool();

• Change the connection URL to enable DRCP
– Eg:,jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(HOST=myhost)(PORT=1521)(PROT

OCOL=tcp))(CONNECT_DATA=(SERVICE_NAME=myorcldbservicename))(SERVER=PO
OLED)))”;

• DRCP Tagging – Associate a connection to a mid-tier
with a particular tag name to retrieve a specific session
easily.
– Enable using the property oracle.jdbc.UseDRCPMultipletag = true

32

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Horizontal Scaling Java Workloads

33

SHARD A SHARD B SHARD C

Shared
Connection

Pool

Single Unsharded Database

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Scaling Java applications

• Session based Sharding via Sharding Key

• Sharding APIs – JDBC/UCP

• UCP as a Shard Director

34

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Coordinator
DB

Application
Tier

Routing
Tier

Database
Tier

35

Session-Based Routing via Sharding Key

Sharding Key: A partitioning key for a
sharded table.
- E.g: custid- shard key used for partitioning the table
‘customers’.

Super Sharding Key: Required in case of
composite sharding.

Shard Director: Looks up sharding key and
redirects to right shard containing the
data.

Application
Server

Shard
Director

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Sharding APIs : JDBC/UCP

// Sharding Key is a compound key of 2 sub-keys

OracleShardingKey shardingKey =

dataSource.createShardingKeyBuilder()

.subkey("Customer_EMAIL", oracle.jdbc.OracleType.VARCHAR2)

.subkey("1234",

oracle.jdbc.OracleTypes.NUMBER)

.build();

// Super Sharding Key with only one sub-key

OracleShardingKey superShardingKey =

dataSource.createShardingKeyBuilder()

.subkey("Customer_Location_US”,oracle.jdbc.OracleType.VARCHAR2

)

.build();

Building Sharding Key and Super Sharding Key

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Oracle JDBC Driver Oracle Universal Connection Pool (UCP)

JDBC/UCP connection with a Sharding Key

OracleDataSource ods =

new OracleDataSource();

// Set connection properties

ods.setURL(DB_URL);

ods.setUser("hr");

ods.setPassword("****");

// Get an Oracle JDBC connection for a shard

Connection conn =

ods.createConnectionBuilder()

.shardingKey(shardingKey)

.superShardingKey(superShardingKey)

.build();

PoolDataSource pds =

PoolDataSourceFactory.getPoolDataSource();

// Set Connection Pool properties

pds.setURL(DB_URL);

pds.setUser("hr");

pds.setPassword("****");

pds.setInitialPoolSize(10);

pds.setMinPoolSize(20);

pds.setMaxPoolSize(30);

// Get an UCP connection for a shard

Connection conn =

pds.createConnectionBuilder()

.shardingKey(shardingKey)

.superShardingKey (superShardingKey)

.build();

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Get connection
Shard key = 35

UCP Learning Shard Topology
▪ During pool initialization (or when the pool connects to newer

instances) the shard topology is collected from various shard to
create a Shard Routing Table

UCP

Shard 1

1 -- 10 Chunk 1 Shard 1

Shard 2

Shard 3

Shard 4

GSM
listener

Shard Keys Range Chunk Name Shards

1 -- 10 Chunk 1 Shard 1

10 -- 20 Chunk 2 Shard 2

1 -- 10 Chunk 1 Shard 1

10 -- 20 Chunk 2 Shard 2

20 -- 30 Chunk 3 Shard 3

1 -- 10 Chunk 1 Shard 1

10 -- 20 Chunk 2 Shard 2

20 -- 30 Chunk 3 Shard 3

30 -- 40 Chunk 4 Shard 4

Get connection
Shard key = 5
Get connection
Shard key = 15

Get connection
Shard key = 25

38

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

UCP as a Shard Director
• Once the required topology is collected by UCP, connection

requests can be directly serviced by the pool without going
through the shard director.

• Based on the shard keys provided in the connection request,
UCP can lookup the corresponding shard on which keys exist
and pooled connections to the shard can be efficiently reused.

UCP

Shard 1

Shard Keys Range Chunk Name Shards

1 -- 10 Chunk 1 Shard 1

10 -- 20 Chunk 2 Shard 2

20 -- 30 Chunk 3 Shard 3

30 – 40 Chunk 4 Shard 4

Shard 2

Shard 3

Shard 4

GSM
Listener

Get connection
Shard key = 16

Get connection
Shard key = 38

39

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Run time Load Balancing
• Leverage Load Balancing Advisory
– Used to balance the work across the RAC instances.

– Determine the instance that offers the best performance

– Establish connections based on the advisory

• UCP uses RAC Load Balancing Advisory and distributes
the load equally among the instances.

• Service goals must be set to SERVICE_TIME or
THROUGHPUT
– srvctl modify service -db <db_name> -service <service_name> -rlbgoal

SERVICE_TIME -clbgoal SHORT

– srvctl modify service -db <db_name> -service <service_name> -rlbgoal
THROUGHPUT -clbgoal SHORT

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Program Agenda with Highlight

What’s New?

Speeding Up Java Applications

Scaling Java Applications

Questions

1

4

2

3

41

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Questions?

Confidential – Oracle Internal 42

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 43

