Leveraging Oracle Database In-Memory to Accelerate Business Analytic Applications
Kai Yu

- Technical Staff, Dell EMC Database Engineering
- 25+ years experience in IT Industry
- Specializing in Database, Cloud, Virtualization and IT Infrastructure
- Author and Speaker (150+ sessions)
- IOUG Cloud Computing SIG Co-founder & Vice President
- Oracle ACE Director since 2010
- OAUG Innovator of Year (2011)
- Oracle Excellence Award - Technologist of the Year: Cloud Architect by Oracle Magazine (2012)
• Oracle 12(R1/R2) In-Memory Database (IMDB)
• Oracle Database and BI Services in Oracle Cloud
• Leverage In-Memory Advisor
• Oracle Exalytics In-Memory vs IMDB
• Oracle 12c IMDB for Business Analytics Application
• Questions
Oracle 12c In Memory Option

- Oracle 12c Database Introduced Database In-Memory option:
 - Accelerates analytics by orders of magnitude.
 - Speeding up mixed-workload OLTP.
 - Transparent to applications.

- Dual-Format of Architecture in Oracle 12
 - Oracle traditional row based:
 - Row format data stored in storage
 - Row format data stored in buffer cache in SGA
 - Good for OLTP (insert/update/delete) operations
 - Oracle 12c introduced In-memory option
 - IntColumn format In-Memory column storage in SGA
 - A New component of Oracle Database SGA.
 - Coexist with database introduced with Oracle 12.1.0.2
 - Buffer cache (row format)
 - Good for OLAP applications
Oracle 12c In-Memory Option

• The Dual Format Architecture can be illustrated as

• The In-Memory Column Store:
 – A new component called In-Memory Area in SGA

 SQL> alter system set inmemory_size = 100G scope=spfile;

 Alter SYSTEM SET INMEMORY_QUERY=DISABLE
 Alter SYSTEM SET INMEMORY_QUERY=ENABLE

• Help Analytical processing through reading data from the In memory column store
• Help OLTP by allowing you drop indexes that were created for reporting
Oracle 12c In-Memory Option

• Select contents to populate the In-Memory column store:
 – Tablespace level: alter tablespace data MEMORY;
 – Table level: alter table sales INMEMORY PRIORITY CRITICAL;
 alter table sales INMEMORY NO INMEMORY(prod_id)
 – background process to populate in-memory store:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>oracle</td>
<td>14737</td>
<td>1 0 14:30</td>
<td>00:00:17</td>
<td>ora_w004_pocdb1</td>
</tr>
<tr>
<td>oracle</td>
<td>14759</td>
<td>1 0 14:30</td>
<td>00:00:15</td>
<td>ora_w005_pocdb1</td>
</tr>
<tr>
<td>oracle</td>
<td>14763</td>
<td>1 0 14:30</td>
<td>00:00:12</td>
<td>ora_w006_pocdb1</td>
</tr>
<tr>
<td>oracle</td>
<td>14765</td>
<td>1 0 14:30</td>
<td>00:00:12</td>
<td>ora_w007_pocdb1</td>
</tr>
<tr>
<td>oracle</td>
<td>17515</td>
<td>1 0 14:38</td>
<td>00:00:06</td>
<td>ora_w008_pocdb1</td>
</tr>
<tr>
<td>oracle</td>
<td>19344</td>
<td>1 0 14:43</td>
<td>00:00:06</td>
<td>ora_w009_pocdb1</td>
</tr>
<tr>
<td>oracle</td>
<td>19346</td>
<td>1 0 14:44</td>
<td>00:00:00</td>
<td>ora_w00a_pocdb1</td>
</tr>
<tr>
<td>oracle</td>
<td>112632</td>
<td>1 0 13:26</td>
<td>00:00:22</td>
<td>ora_w00b_pocdb1</td>
</tr>
<tr>
<td>oracle</td>
<td>112634</td>
<td>1 0 13:26</td>
<td>00:00:22</td>
<td>ora_w00c_pocdb1</td>
</tr>
</tbody>
</table>

• Features to accelerate query execution: In-Memory Scan, In-Memory Storage Index, SIMD Vector Processing, In-Memory Joins, in Memory Aggregation
• In Memory Option: Application transparent, no need to modify application.
• How to determine if In-Memory option takes effect. Look the INMEMORY key word in query plan such as:

<table>
<thead>
<tr>
<th>PLAN_TABLE_OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>
Oracle 12cR2 IMDB New Features

- **New Features Summary:**
 - In-Memory Column Store dynamic resizing
 The size of the In Memory can be dynamically increased without reopening the database
 - In-Memory Expressions
 Frequently used expression for population in the IM column store
 - In FastStart
 Database reads data from the FastStart area and populate IM column store
 - Object-level support for service
 Control the population of an object for the database instances where a service runs
 - In column storage on a standby database
 Enable an IM column store in an Oracle Active Data Guard standby database.
 - ADO support for the IM column store
 ADO policies to evict objects from IM column store based on Heat Map statistics
 - Join groups
 List two joined columns and help eliminate the performance overhead of decompressing and hashing column values during the join operation.
Oracle 12cR2 IMDB New Features

• In-Memory Column Store dynamic resizing
 Prerequisites: the column store enabled, the comparability level 12.2.0 or higher, db instance started with spfile, new size at least 128M bigger (if smaller, use scope=spfile)
 sqlplus>alter system set inmemory_size = 60000M scope=both

• In-Memory expressions (IME)
 “Pre-compute” frequently evaluated expressions
 IME can be created for:
 - Virtual columns
 - Automatic capture
 . Frequently evaluated query expression
 . Other useful internal computation (join hash values, predicate evaluations, data conversion)
 . Reduce computationally expensive repeated evaluations
 . Significant performance increases
 . Example: Select price*Tax_ratio from sales where state='TX'
Oracle 12cR2 IMDB New Features

- **Identify IM-memory expression**
 DBMS_INMEMORY_ADMIN.IM_CAPTURE_EXPRESSIONS identifies “hot” expression, called IM-Memory Expressions (IM Expression)
 - auto-detected :hot expression
 - Have a 1 to 1 mapping with rows in a table

 \[
 \text{select employ_name, Round(Salary*12)/52,2) as "weekly_sal from employees}
 \]

 Round(Salary*12)/52,2) is frequently and computationally intensive a good candidate for IM expression.

- **Populate IM-memory expression**
 The INMEMORY_EXPRESSIONS_USAGE determines which type of IM expression is populated:
 - Enable, Static_only, Dynamic only, Disable modes
• In Memory Virtual Columns
 – The value on an IM virtual column derived by an expression.
 Example, in Sales table: sale_price=price * (1+tax_ratio), the value is pre-calculated, stored
 in the IM column store to improve the query performance
 – IM expression and IM virtual column: same underlying mechanism
 IM virtual columns are user created and exposed,
 IM expressions are database created and hidden.
 – Populate virtual columns
 inmemory_virtual_columns = (manula, enable, disable)
 – Example:
 sqlplus>alter table sales add sale_price as price * (1+tax_ratio);
 sqlplus>alter table set inmemory_virtual_columns =enable
 scope=spfile;

Oracle 12cR2 IMDB New Features

- Join groups
 - The IM columns store enhances the performance of joins when the two join tables are stored in Memory
 - Join Group: list two joined columns and help eliminate the performance overhead of decompressing hashing column values during the join operation
 - Create join groups:

```sql
Example: create a join group between part and lineitem on the partkey
create inmemory join group jgrp_lo_part(lineitem(l_partkey), part(p_partkey))
```

--- Compare the performance with or without join group:

without Join group:

```sql
SELECT /*+ no_inmemory no_vector_transform */
    count(*),
    count(l.l_orderkey),
    count(p.p_type)
FROM Lineitem l, part p
WHERE l.l_partkey = p.p_partkey
AND  l.l_discount > 0;
```

With Join group:

```sql
SELECT /*+ no_vector_transform */
    count(*),
    count(l.l_orderkey),
    count(p.p_type)
FROM Lineitem l, part p
WHERE l.l_partkey = p.p_partkey
AND  l.l_discount > 0;
```
Oracle Database Cloud Service in Oracle Cloud

- Oracle Database Cloud service in Oracle Cloud
 - Oracle Database Cloud Service
 - Oracle Exadata Express Service

- Two levels of Oracle Database Cloud Service
 - Virtual Images level: Virtual OS, customers to install Oracle
 - Oracle Database Cloud Service Level

Oracle Database service already installed. Oracle RAC not supported
Two Oracle versions supported: 12.1.0.2 and 12.2.0.1: You can try 12.2.0.1 now
Oracle Business Intelligences in Oracle Cloud

- Offer the full array of intuitive BI tools
- Intuitive Cloud Experience
 Friendly interactive interface has built-in guidance and tutorials to get users productive quickly
- Advanced Analysis and Visualizations
 Select interactive visualization and easy create advanced calculations to reveal the insights in your data
- Interactive Dashboards
 Configurable dashboards that allow you to quick analyze and manage activity across the entire system.
- Products:
 Business Intelligence Cloud Service
 Oracle Database Schema Service
 Oracle Database Cloud Service
Leverage In-Memory Advisor

- Oracle In-Memory Advisor
 - Help to answer these questions:
 - Which tables and/or partitions should be marked for In-Memory column store
 - How to size the In memory.
 - An Oracle new feature, licensed as part of the Database Tuning pack
 - MOS note: 1965343.1 Oracle In-Memory Advisor (include twp_oracle_database_in_memory_advisor.pdf whitepaper)
- Two whitepapers: Oracle Database In-Memory Advisor and Oracle Database In-Memory Advisor Best practices published in February 2015
- How it works:
 1. Differentiates analytics processing from other database activity based upon SQL plan cardinality, Active Session History (ASH), use of parallel query, and other statistics.
 2. Estimates analytic processing performance improvement factors based upon the following:
 - Eliminating user I/O waits, cluster transfer waits, buffer cache latch waits,
 - Certain query processing advantages related to specific compression types.
 - Decompression cost heuristics per specific compression types.
 - SQL plan selectivity, number of columns in the result set, etc.
Leverage In-Memory Advisor

- Download and Install In-Memory Advisor
 - Download imadvisor.zip from Oracle, copy to DB server and unzip it
 - Installed in SQLPLUS with sysdba privilege

  ```sql
  SQL> @instimadv.sql
  ```

 - Do you currently have a valid Oracle Tuning Pack license with this database (Y/N)?
 - Create a new user called IMADVISOR and schema
 - Create DBMS_INMEMORY_ADVISOR package
 - Need to provide the connection string (from TNSNAME entry)
 - Provide the Oracle directory object IMADVISOR_DIRECTORY directory that In-Memory Advisor uses
 - Need to specify the users that will use this tool for tuning:
 - It will GRANT EXECUTE ON DBMS_INMEMORY_ADVISOR to the users
 - You can add more users by granting EXECUTE ON DBMS_INMEMORY_ADVISOR to additional users late
Leverage In-Memory Advisor

• Running In-Memory Advisor
 - Run script `imadvisor_analyze_and_report.sql` as a user with the privilege to execute the DBMS_INMEMORY_ADVISOR package:

    ```sql
    SQL> @imadvisor_analyze_and_report
    ```

 Specify the IM task name
 The IM Advisor generates a report as `imadvisor_<taskname>.html` file in the current working directory
 The sql file is generated as `imadvisor_sql_<taskname>.sql`

 Enter value for `im_task_name`: test
 IM Task name Specified: test
 Enter begin time for report: ...
 Enter value for begin_time: -1:30
 Report begin time specified: -1:30
 ...

 Enter duration in minutes starting from begin time:
 Defaults to SYSDATE - begin_time
 Enter value for duration: 60
 Report duration specified: 60

 Using 2016-Jan-14 09:33:13.000000000 as report begin time
 Using 2016-Jan-14 10:33:13.000000000 as report end time

 IM Advisor: Adding Statistics..
 IM Advisor: Adding Statistics..
 IMADVISOR: Finished Adding Statistics
 IMADVISOR: Finished Executing the task
 IM Advisor: Generating Recommendations..
 imadvisor_cmpldaad.html
 imadvisor_sql_cmpldaad.html
 imadvisor_object_cmpldaad.html
Leverage In-Memory Advisor

- Output of In-Memory Advisor
 - imadvisor_taskname.html
- Summary of the total database time analyzed
- Percentage for Database Time for Analytics Processing
- In-Memory sizes vs the estimated benefit

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Object</th>
<th>Compression Type</th>
<th>Estimated In-Memory Size</th>
<th>Estimated Analytics Processing Seconds</th>
<th>Estimated Reduced Analytics Processing Seconds</th>
<th>Estimated Analytics Processing Performance Improvement Factor</th>
<th>Benefit / Cost Ratio (Reduced Analytics Processing / In-Memory Size)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE</td>
<td>CMPLUSER.DISTRICT</td>
<td>Memory compress for query low</td>
<td>1MB</td>
<td>110</td>
<td>81</td>
<td>3.8X</td>
<td>4489 : 1</td>
</tr>
<tr>
<td>TABLE</td>
<td>CMPLUSER.ORDERS</td>
<td>Memory compress for query low</td>
<td>2GB</td>
<td>1823</td>
<td>1481</td>
<td>5.3X</td>
<td>42 : 1</td>
</tr>
<tr>
<td>TABLE</td>
<td>CMPLUSER.STOCK</td>
<td>Memory compress for query low</td>
<td>36GB</td>
<td>3314</td>
<td>2451</td>
<td>3.8X</td>
<td>4 : 1</td>
</tr>
</tbody>
</table>
Oracle Exalytics In-Memory Machine

- Oracle Engineered System for Extreme Analytics: Delivers extreme in-memory analytics performance, two main components together
 - Optimized Oracle Business Intelligence Foundation Suite
 - Oracle TimesTen In-Memory Database for Exalytics
Oracle Exalytics In-Memory Machine

- Oracle Exalytics In-Memory Machine features
 - Single X86-64 server: 4 X Intel Xenon E7-4800 processors, 2 TB RAM, 2 QDR 40Gb/s Infiniband Ports, 2X 10Gbps Ethernet ports, 6 X 400G Flash PCI-e
 - Oracle Business Intelligence Foundation Suite including Oracle Essbase
 - Oracle TimesTen In-Memory Database for Exalytics
 - Exalytics In-Memory Software
- Difference between TimesTen In-Memory Database vs Oracle 12c In-Memory
 - TimesTen In-Memory Database for Exalytics is a full memory database designed to run Analytics.
 - TimesTen In-Memory Database runs on the same server as OBIEE
 - Tightly connected between BI and TimesTen In-Memory Database
 - Oracle 12c In-Memory is a feature added to Oracle Database
 - Oracle 12c In-Memory works for both OLAP and OLTP mixed workloads
Oracle BI Enterprise Edition (OBIEE) 11g

- Oracle OBIEE: Business intelligence and Analytics Platform and common infrastructure for reports, scorecards, dashboards, ad-hoc analysis, OLAP analysis
 - OBIEE 11g Interactive Dashboards solution for Interactive Dashboards
 - Ad hoc Analysis and Interactive Reporting
 - Oracle BI Mobile for Mobile Analytics
Oracle OBIEE with Oracle 12c IMDB

- Oracle BI server Architecture
 - Oracle BI server connects to Oracle Database through ODBC/JDBC
 - Oracle BI present a logic schema view independent of physical database
 - BI server translates the logic SQL to physical SQL
 - Oracle BI Administration tools shows the three layers: Presentation Business Model and Mapping, Physical
POC: Accelerates BI with Oracle 12c IMDB

• Basic Idea:
 – On physical level BI reports usually involve a large full table scan and complex join operation.
 – Full tablescan operation is very expensive in large storage IO operation.
 – Load the partially or the entire table to In-Memory store to reduce the storage IO for the full tablescan.

• How to identify the tables to load into In Memory store: in manual way
 – Start with the slow report and find the presentation layer the report reads
 – Through the mapping from presentation layer to the physical layer to identify the physical SQL for the report
 – Through the physical SQL to identify the underneath full table scan operation.
 . The rest presentation use the EDI Queue report as an example to use the process.
POC: Accelerates BI with Oracle 12c IMDB

- Identify Physical SQL layer for the report:
 - From the Dashboard report definition to identify the presentation layer Fact EDI Queue.
 - Through the presentation layer to find the Business Model and mapping.
POC: Accelerates BI with Oracle 12c IMDB

• Review the definition of the physical View:
 – View name: FACT_EDI_QUEUE_V and found underneath physical tables
 – Identified four large tables:
 EDAPIHDR_BASE, EDAPIQ_BASE, EDAPIQ_BASE, VEN_LOC_BASE

• Populate In-Memory Column store with these four tables:
 – SQL> alter table APD_BASE.EDAPILIN_BASE inmemory priority high;
 – SQL> alter table APD_BASE.EDAPIQ_BASE inmemory priority high;
 – SQL> alter table APD_BASE.EDAPIHDR_BASE inmemory priority high;
 – SQL> alter table APD_BASE.VEN_LOC_BASE inmemory priority high;

• Check size of the segments in the In-Memory
 SQL> select SEGMENT_NAME, INMEMORY_SIZE from v$im_segments;

<table>
<thead>
<tr>
<th>SEGMENT_NAME</th>
<th>INMEMORY_SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEN_LOC_BASE</td>
<td>1279648</td>
</tr>
<tr>
<td>EDAPIQ_BASE</td>
<td>291168512</td>
</tr>
<tr>
<td>EDAPIHDR_BASE</td>
<td>961496576</td>
</tr>
<tr>
<td>VEN_LOC_BASE</td>
<td>1279648</td>
</tr>
<tr>
<td>EDAPILIN_BASE</td>
<td>930710528</td>
</tr>
<tr>
<td>VEN_LOC_BASE</td>
<td>1279648</td>
</tr>
</tbody>
</table>
POC: Accelerates BI with Oracle 12c IMDB

- Compare the Query plans on: FACT EDI QUEUE V
 - Not In-Memory
 - In-Memory
POC: Accelerates BI with Oracle 12c IMDB

• Compare the Query plans execution time on FACT_EDI_QUEUE_V
 Not In–Memory

```
SQL> set timing on
SQL> set time on
12:35:36 SQL> select count(*) from APD_STAR.FACT_EDI_QUEUE_V;

  COUNT(*)
-------------
    51638519
Elapsed: 00:04:02.80
```

In–Memory

```
14:51:55 SQL> select count(*) from APD_STAR.FACT_EDI_QUEUE_V;

  COUNT(*)
-------------
    51638519
Elapsed: 00:02:15.11
```

Compare the Dashboard report execution:
 Not In–Memory: 9 minutes 31 seconds
 In–Memory: 7 minutes 50 seconds

. Next step: Test the performance gains by using the join group in 12cR2
Case Study 2: Use IMDB for BA Apps

• POC Background

Dell Statistica Analytic Application

Database queries: form dataset by querying 32 columns of 100M rows in a single select statement and computed various stats with these columns:

Example:

<table>
<thead>
<tr>
<th></th>
<th>row processed</th>
<th>cost</th>
<th>recursive call</th>
<th>consistent gets</th>
<th>physical reads</th>
<th>Elapsed: time</th>
</tr>
</thead>
<tbody>
<tr>
<td>in memory</td>
<td>100,000,000</td>
<td>8,781</td>
<td>251</td>
<td>967</td>
<td>0</td>
<td>13.53.20</td>
</tr>
<tr>
<td>not in memory</td>
<td>100,000,000</td>
<td>474</td>
<td>240</td>
<td>232704</td>
<td>7</td>
<td>14.05.7</td>
</tr>
</tbody>
</table>

Not much difference in Elapsed time:
Why: Query Statistics on in memory: huge number of data sent on network

17554520327 bytes sent via SQL*Net to client
73333877 bytes received via SQL*Net from client
66666668 SQL*Net roundtrips to/from client

CPU cost comparisons of four major queries
Case Study 2: Use IMDB for BA Apps

- Example 2: Statistics Aggregation/Computation on large data set

Took the dataset (100M rows x 32 columns) and computed various stats for columns in a single select statement with in-memory option on/off (table was configured for parallel execution). The results are as follows:

<table>
<thead>
<tr>
<th>Stats computed for 32 columns</th>
<th>No In-memory</th>
<th>In-memory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time (s)</td>
<td>Cost</td>
</tr>
<tr>
<td>Sum</td>
<td>6.313</td>
<td>8781</td>
</tr>
<tr>
<td>Sum Avg</td>
<td>6.328</td>
<td>8781</td>
</tr>
<tr>
<td>Sum Avg Count</td>
<td>6.266</td>
<td>8781</td>
</tr>
<tr>
<td>Sum Avg Count StdDev</td>
<td>19.564</td>
<td>8781</td>
</tr>
<tr>
<td>StdDev</td>
<td>14.314</td>
<td>8781</td>
</tr>
</tbody>
</table>

Why:
For more complex aggregations like STDDEV, all of the data in the column is scanned, decompressed and sent to SQL execution layer where the STDDEV calculation is conducted. STDDEV calculation takes more time than scanned, decompressed, majority of the spend on STDDEV. The time saving by In memory is not significant compared the elapsed time for STDDEV operation.
Contact me at kai_yu@dell.com or visit my Oracle Blog at http://kyuoracleblog.wordpress.com/