

From 10046 to AWR / ADDM / RTM / ASH
Modern Techniques for Diagnostics

John Hurley
Senior Database Developer
Federal Reserve Bank of Cleveland

Twitter handle: @grumpyolddba
Email: hurleyjohnb@yahoo.com

Working with Oracle for 20 years Oracle Ace
| attend one or two conferences a year

Retired President of Northeast Ohio Oracle Users Group
NEOOUG

Great Lakes Oracle Conference in late May 2018

Outside interests:

Running / SJA cross country team / Music / Science Fiction
Learning to play guitar

mailto:hurleyjohnb@yahoo.com

= DD NOT PAY
ATTENDAR

Agenda for presentation:

My experience when | started working with Oracle

* A history of built in database instrumentation within Oracle
software including some of the tools and approaches
available at various stages

« An emphasis on critical ideas and context plus a few
tips/tricks on how to maybe follow the yellow brick road

« 10046 tracing overview /| methodology / some details
- It’s about time
- AWR/ADDM/RTM

- ASH

GLOC 2019

GLOC 2019

GLOC 2019

GLOC 2019

GLOC 2019

My transition from IBM Mainframe environment to Oracle
database:

Several of the companies that | had worked for doing mainframe
work had documented transaction processing times for their critical
lines of business.

Does anyone still do this anymore? | hope so but | don’t see that
much anymore.

How fast does it have to be? |Is anyone screaming about it?
| was confused about how to solve oracle performance problems

the tools that | had in the mainframe world (CICS / IMS) were
gone.

GLOC 2019

GLOC 2019

&
- .
. rm
N
o~
—
=
5%

fri0 2 Ia

" ""...'

4. llt:i \-,p¢°

OREILLY

Method C: The Trial-and-Error Method That Dominates the Oracle
Performance Tuning Culture Today

1. Hypothesize that some performance metric x has an unacceptable value.

2. Try things with the intent of improving x. Undo any attempt that makes perfor-
mance noticeably worse.

3. If users do not perceive a satisfactory response time improvement, then go to
step 1,

4. If the performance improvement is satisfactory, then go to step 1 anyway,
because it may be possible to produce other performance improvements if you
just keep searching.

GLOC 2019

SQL> —- Get initial Buffer Hit Ratio reading...
SQL> SELECT ROUND({(1l-(phy.wvalue / (cur.value + con.value))})*100,2) "Cache Hit Ratio"
2 FROM vSsysstat cur, visysstat con, vSsysstat phy

3 WHERE cur.name = 'db block gets'

4 AND con.name = 'consistent gets'
5 AND phy.name = '"physical reads'
6 /

Cache Hit Ratio

STATISTIC EXAMPLE 1
Current gets 250
Consistent gets 900

Physical reads 150
DBCHR 87.0

GLOC 2019

Connor McDonalds “pick a cache hit buffer
ratio” script.

All we have to do is put in a sql statement that chews
some CPU and time and does another 89k consistent
gets and bingo!

STATISTIC EXAMPLE 1 EXAMPLE 2

Current gets 250 250
Consistent gets 900 90000
Physical reads 150 150
DBCHR 87.0 99.8

GLOC 2019

Even in the early days of Oracle Performance Tuning some
smart people were doing things a lot better.

V$SESSION

How many ACTIVE sessions that are not BACKGROUND are
runningat9am/10am /1 pm/ 2 pm ...

What SQL shows up in these ACTIVE sessions

How long does it take these SQL statements to process

SELECT substr(sq.sqgl text,1,100) what sqgl,
vs.last call et,
vs.sgl id,
vs.s51d, vs.serialé#,
vs.username, vs.machine, vs.module
FROM v5session vs,

v5sqgl sq
WHEEE vs.status = 'ACTIVE'
AND ws.type <> 'BACKGROUND'
BND wvs.schemaname <> '5Y5'
END vs.sgl id = sqg.sql_id
BRND vs.sgl child number = sg.child number

ORDER BY 2 desc;

GLOC 2019

» Database Time = Total time spent by sessions in the
database server actively working (on CPU) or actively
waiting (non-idle wait)

+ Active Sessions = The number of sessions active
(working or waiting) in the database server at a
particular time

» Average Active Sessions = DB Time / Elapsed Time

GLOC 2019

'WHAT_SQL | LAST_CALL_ET

.select * from a, 5 where a.START_DATETIME > to 5733
‘SELECT f* */ aat.agency_app_trans_id, aat . 266_
| SELECT /* */ AGENCY_NAME, AGENCY_SHORT_NAME, . 11

SELECT /* %f AGENCY_NAME, AGENCY_SHORT_NAME, 8
| SELECT /* */ AGENCY_NAME, AGENCY_SHORT_NAME, 4
'SELECT tas_id, tas_label, tas_string, decode(trim(tas_string), ",'COMPONENT", null,"COMPONE 0
'SELECT substr(sq.sql_text,1,100) what_sql, vs.last_call_et, vs.sql_id, vs.sid, 0
|SELECT aasv.agency:app_id{ aasv.agency_app_name, aasv.ag_ency?id, 0

LAST_CALL_ET SQL_ID SID SERIAL# USERNAME MACHINE MODULE
5808 4hjxz687p2m9m 885 47663 JET SQL Developer

GLOC 2019

DBMS XPLAN formatted:

SQL_ID 4hjxz687p2m9m, child number O

select * from o)
where a. START_ui.cilME > To_gate \ u3/40/2017 U/:39:00", 'mm/dd/yyy,
hh24:mi:ss') and a.START_ DATETIME < to_ dare ('N/I&/2017

10:44:00" . 'mm/dd/vvvv hh24:mi:ss ') and b.. = '70050098"
and b.s ='04' order by 3

Plan hash value: 2213452100

| Id | oOperation | Name | Rows | Bytes |TempSpc| ¢
| O | SELECT STATEMENT I | I I I
1	SORT ORDER BY		5575	1268k	1608k
2	MERGE JOIN CARTESIAN		5575	1268K]	
* 3	TABLE ACCESS FULL		Z	602	
4	BUFFER SORT		832	119K	
5	PARTITION RANGE ALL		832	119K	
* 6	TABLE ACCESS FULL		832	119K	

GLOC 2019

Oracle Performance Tuning:

Cary Millsap and Method R provided a light at the end
of the tunnel.

“Optimizing Oracle response time is, for the most part, a
solved problem.”

Method R based on instrumentation provided via the
Oracle Wait Interface.

Method R is a Repeatable Methodology!

No more silver bullets. You don’t need the Lone
Ranger.

Method R emphasizes no it DEMANDS that you pay
attention to pretty much only response time.

GLOC 2019

Method R: A Response Time—Based Performance Improvement
Method That Yields Maximum Economic Value to Your Business

1. Select the user actions for which the business needs improved performance.

2. Collect properly scoped diagnostic data that will allow you to identify the causes
of response time consumption for each selected user action while it is perform-
ing sub-optimally.

3. Execute the candidate optimization activity that will have the greatest net payoff
to the business. If even the best net-payoff activity produces insufficient net pay-

off, then suspend your performance improvement activities until something
changes.

4. Go to step 1.

GLOC 2019

Notes from Chapter 11.:

Clues to the response time components that show up in resource profiles

associate directly to instrumented kernel code
Tanel Poder: “It’s all 1 big C program (mostly)”
VSEVENT NAME

+ CPU service (CPU TIME)

+ unaccounted for time (usually very minor)

Number of wait events in various Oracle releases?

7.3.4 106 wait events

10.0.1 500

11.2.0.4 1365 of them

GLOC 2019

EEEEEEREN

Other
Queueing
Network
Administrative
Configuration
Commit
Application
Concurrency
System 1/0
User 1/0
Scheduler

CPU + CPU Wait

Example 12-3. Resource profile for Oracle Purchasing program

Calls

Dur/Call

0.009652s
0.006913s

0.029083s
0.024502s
0.029990s
0.026505s
0.002846s
0.071806s
0.033606s

Response Time Component Duration
CPU service 1,527.55s 60.8%
db file sequential read 432.0s 17.2%
unaccounted-for 209.6s 8.3%
global cache lock s to x 99.9s 4.0%
global cache lock open s 85.95 3.4%
global cache lock open x 57.9s 2.3%
latch free 26.8s 1.1%
SQL*Net message from client 19.1s 0.8%
write complete waits 11.1s 0.4%
enaueue 11.1s 0.4%

Example 12-4. The Hotsos Profiler identifies the

statement

SQL Statement Id Duration
704365403 1,066.4s 69.8%
3277176312 371.9s 24.3%

GLOC 2019

GLOC 2019

Method R summary:
Find out what you need to investigate for performance anomalies

Determine how you need to trace the critical sections of the problem

Turn on the tracing
Recreate the issue while trace is running
Turn off the trace

BINGO You have a medium to large file with lots and lots of wait event
information and the SQL involved.

Put the trace file through some kind of resource profiler (tkprof / hotsos or
method r profiler / MR trace / orasrp / others)

Investigate by looking at wait event diagnostics for things taking the most
time (the most response time).

Top down approach: work on the items/symptoms/wait events causing the
most delays (causing the longest response time).

GLOC 2019

Tim Hall:
https://oracle-base.com/articles/misc/sql-trace-10046-
trcsess-and-tkprof

It can be a little tricky getting a trace started and stopped at times. Lots of
different ways to invoke it.

OEM and/or Toad and/or Cloud Control can be used (if access level is high
enough) to invoke tracing.

Diagnostics and instrumentation invoked from the inside while the code is
executing cause information to be written out to a trace file.

How do you digest the output of a trace file? Well you can eyeball it line by line
but not recommended.

A resource profiler takes 10046 trace file output and helps make it actionable.

TKPROF or Method R Profiler ... Toad even has something now? Free
software OraSRP ...

GLOC 2019

Trick #1 ... Sample login trigger to turn on trace ...

CREATE OR REPLACE TRIGGER USER_TRACE_TRG
AFTER LOGON ON DATABASE
DECLARE
v_program varchar2(48);
v_audsid NUMBER;
CURSOR get_sid IS
SELECT sid, serial#, osuser, machine, program FROM v$session WHERE audsid=v_audsid;

v_sid_rec get_sid%ROWTYPE; -- v_sid NUMBER; v_serial NUMBER;
BEGIN
v_audsid := sys_context('USERENV', 'SESSIONID');

OPEN get_sid;
FETCH get_sid INTO v_sid_rec;
IF get_s1d%FOUND THEN
v_program := v_sid_rec.program;
END IF;
CLOSE get_sid;
IF (instrv(v_program, 'SQL*Plus') > 0) THEN -- instr(v_program, 'ocpppp29') > 0
-- IF SYS_CONTEXT('USERENV', "HOST') = f#¥*¥¥%¥*! AND
SYS_CONTEXT('USERENV', "SESSION_USER') = f#¥¥¥%¥x! THEN
-- EXECUTE IMMEDIATE 'alter session set statistics_level=ALL';
-- EXECUTE IMMEDIATE 'alter session set max_dump_file_size=UNLIMITED';
EXECUTE IMMEDIATE 'alter session set events ''10046 trace name context forever, level
12|||;
-- sys.dbms_system.set_ev(v_sid,v_serial,10046,12,"'");
END IF;
EXCEPTION
WHEN OTHERS THEN NULL;
END;

/

alter trigger SYS.USER_TRACE_TRG DISABLE;

GLOC 2019

Things have changed a lot since my Oracle early days

A lot of the heavy lifting involved in accessing relevant
diagnostics has been internalized in the Oracle code base

Licensing: Diagnhostics pack and Tuning pack
10g brings AWR and ADDM and ASH

119 lots of improvements in AWR/ADDM/ASH
11g has RTM

RTM compared to a 10046 trace?

ASH compared to a 10046 trace?

GLOC 2019

. Automatic Workload Repository (AWR)

Built-in,
automatic ~ g” ADDM finds
performance top problems
statistics data * MMON ADDM
warehouse SYSAUX and
: AWRData 1 AWR
- \‘ reports
In-memory : ‘w :
statistics ;gg Sl RE1
:00 a.m. £ f Eight
E 3 asH 0:00 a.m.j_ SNaPSot2 i 4o ¢
@ tatistics 10:00 a.m é"m & |
v ; L 4

\ SGA _/ \ ‘ snapShOt 4 /

M,B A [oea_HisTo4)

Real Time Monitoring

GLOC 2019

Let’s change the retention and interval settings.

Interval will be set to 10 minutes and retention to 35 days
(35x24x60 = 50400)

exec dbms_workload_repository.
modify_snapshot_settings
(interval =>

retention => 50400)

GLOC 2019

o
o
~
O
@)
—
)

GLOC 2019

GLOC 2019

4
A

L L XY\

7/

\ T AL LEAN)
%5

& S/ \\\

GLOC 2019

In 11g forward Oracle automatically monitors SQL statements if they are
run in parallel, or consume 5 or more seconds of CPU or 1/O in a single
execution.

This allows resource intensive SQL to be monitored as it is executing, as well as giving
access to detailed information about queries once they are complete.

SQL monitoring requires the STATISTICS_ LEVEL parameter to be set to 'TYPICAL' or
'‘ALL', and the CONTROL_MANAGEMENT_PACK_ACCESS parameter set to
'DIAGNOSTIC+TUNING'.

MONITOR Hint
The MONITOR hint will force on SQL monitoring for statements
SELECT /*+ MONITOR */ d.dname, WM_CONCAT(e.ename) AS employees
FROM empe
JOIN dept d ON e.deptno = d.deptno
GROUP BY d.dname
ORDER BY d.dname;

Also if you have SQL statements you don't want to monitor
you can use the NO_MONITOR hint

GLOC 2019

Rows in v$sql_monitor may not be around for very long (my
experience seems to be an hour at most often less) after
monitoring has completed. While the status is executing you
can look at RTM information while it is “changing”.

select distinct status from v$sql_monitor

|sTATUS
With the right access you could “copy off” DONE
relevant rows from sql_monitor into your own Egzi EEI:LREEMS)
table and research exciting items offline. EXECUTING

format of column binds_xml in [G]V$SQL_MONITOR

Maximum number of plans entry that can be monitored. Defaults to 20 per CPU
Number of plan lines beyond which a plan cannot be monitored

Minimum time (in s) to wait before a plan entry can be recycled

|CPU/O time threshold before a statement is monitored. 0 is disabled

|_sqglmon_binds_xml_format n/a
|_sglmon_max_plan o
|_sqglmon_max_planlines o
| sglmon_recycle time n'a
|_sgimon_threshold o

ajfajfal alla

1 think (underscore sqimon_recycle_time) defaults to 60 seconds is
minimum retention time after execution ends.

alter session set "_sqilmon_max_planlines” = 500; € 300 is default

GLOC 2019

Use RTM as a substitute for 10046 trace:

SELECT substr(sg.sql_text,1,100) what_sql,

select * from v$sgl_monitor vs-Tast_call e,

where status = 'EXECUTING' Ve baetnume v nathine, vs.module

group by sql_id order by 2 desc IR -
AND vs.schemaname <> 'sys’
AND \\;:::g][zgﬂd_number Z :g:zﬂjﬁzﬁnumber

SQL_ID COUNT(*)

6txz4fyjkthc8 5

4zu3y492acc7k 4

a0y6psud2wxv3 4

26dzd78gvcms? 3

3zbgn76xdzjjx 2

4vatuf85avwgz 2

select sql_id, sid, session_serial# from v$sgl_monitor
where status = 'EXECUTING' order by 1

GLOC 2019

/* Run via SQLPLUS */

SET LONG 1000000

SET LONGCHUNKSIZE 1000000
SET LINESIZE 1000

SET PAGESIZE 0 Type => HTML

SET TRIM ON| ACTIVE
SET TRIMSPOOL ON 'TEXT
SET ECHO OFF XML

SET FEEDBACK OFF
SPOOL c:\temp\report_sql_monitor4.htm

SELECT DBMS_SQLTUNE. report_sql_monitor(

sql_id => '6txz4fyjkthc8"',
session_id => 1367,
session_serial => 11,
type => "HTML',
report_Tlevel => 'ALL') AS report
FROM dual;
SPOOL OFF

GLOC 2019

Global Information: EXECUTING

Instance ID J
Session 1367:11)
SQLID 3d1t19229sk9od

SQL Execution ID

Execution Started
First Refresh Time
Last Refresh Time

16777217

01/30/2017 15:18:34
01/30/2017 15:18:40
01/30/2017 15:23:46

Duration 314s

Module/Action JDBC Thin Client/-
Service SYSSUSERS

Program JDBC Thin Client

Binds

I__ ___ Nam~ |Position{Type| Value |
. |DATEJD1/27/2017 00:00:00}

2

3 |DATE01/27/2017 23:59:59)
4 |DATEJ01/27/2017 00:00:00}
S |DATEJ01/27/2017 23:59:59)

Buffer Gets 10 Requests Database Time

GLOC 2019

Wait Adtivity

SQL Plan Monitoring Details (Plan Hash Value=800962418)

id Operation

SELECT STATEMENT

SORT ORDER BY

VIEW

WINDOW SORT

FILTER

Vi

HASH JOIN RIGHT SEMI

COLLECTION ITERATOR PICKLER FETCH

NESTED LOOPS

NESTED LOOPS

7

HASH JOIN

VIEW

[1ng

B8 oa sl walulllo

HASH JOIN

-

HASH JOIN

INDEX FAST FULL SCAN

INDEX FAST FULL SCAN

INDEX FAST FULL SCAN

NESTED LOOPS

NESTED LOOPS

HASH JOIN

TABLE ACCESS FULL

NESTED LOOPS

L

NESTED LOOPS

NESTED LOOPS

TABLE ACCESS BY INDEX ROWID

INDEX UNIQUE SCAN

iy

TABLE ACCESS BY GLOBAL INDEX ROWID

INDEX RANGE SCAN

PARTITION RANGE ALL

9

INDEX RANGE SCAN

4y

TABLE ACCESS BY LOCAL INDEX ROWID

PARTITION RANGE ITERATOR

INDEX UNIQUE SCAN

TABLE ACCESS BY LOCAL INDEX ROWID

INDEX UNIQUE SCAN

ﬁ" A i 443
AN A S A AN A

TABLE ACCESS BY GLOBAL INDEX ROWID

GLOC 2019

GLOC 2019

Es:xs'*’d Cost A‘:t'(‘g"l:se;"’d Execs Rows Memory Temp 10 Requests CPU Activity Wait Activity
1
28 452K 1
28] 4524 1
28] 452 1
1
280 asad 1] 0 760.0KB
408 30 1 1
497 452 1 2
497] 452] 1 7
497 asud 1] 19 1.3MB
655 19 1 664
1 664]
1 664]
655 4 1] 664
655 4 1 664
655 13 1 664|
497] 451K 1 19
497] 451K} 1] 144K .34%
497] 4504 1 144K 1.6MB
53 2 1 61
502l 450K 1 144K
502l 450K 1 144K
s02] 279K 1 144K
1] 2 1 1
1 1 1
502) 1] 144K 1.4%
402K 1 144K .34%
1] 144K 144K] 1.0%
1 25M 144K 94% 100%)
1 144K 144K .34%
1] 144K 144K .34%
1] 144K 144K 1.4%
1 1444 19
1] 19 7 3 (60%)
1] 7 2 L2 (40%)

Built-in,
automatic

performance
statistics data
warehouse

In-memory

statistics
AWR

@ Statistics

SGA

"MMON

- Automatic Workload Repository (AWR)

“A

iy

ADDM finds
me top problems

/ SYSAUX \
: AWRData

7:00 a.m. ‘wt B :

8:00 a.m. | i Eight

9:00 a.m. { shapshot 2 days

10:00 a.mé‘ot 3 '

/ K ‘ Snapshot 4
it
V$ ‘::u‘r'.

E‘DB A DBA HISTY%

Aggregated information or session specific detailed information?

AWR reports work from between snapshots. They are “average” based
they are aggregated information for the most part.

You can’t extrapolate detail from an aggregate. You cannot necessarily
determine what's wrong with an individual program by examining only the
system-wide statistics for an instance.

ADDM is “Al” mined aggregated data targeted for identifying performance
problems ... sort of a resource profile for the database instance.

10046 is detail info resource profile makes it actionable.
RTM is detail information so actionable.

ASH is specific detailed information for sessions “doing things” if they are

doing things (using CPU / waiting for something) when sampled. Then
you get when data moved from memory to disk a sample of a sample.

GLOC 2019

Compare and Contrast on 10046 tracing versus AWR/ADDM/ASH

A 10046 trace works from the inside of the session being traced and
writes information out to external file. It is comprehensive and catches all
of the (currently instrumented) wait events.

It can be complicated and cumbersome to get the access and/or turn
tracing on and off and/or get access to the trace file output.

RTM a lot like 10046 Trace but runs automagically.
A potential weakness using a 10046 trace is that while it shows
“everything” that impacted your session it does not show “what impacts

your session” had on other sessions.

Locking and blocking behavior may not be shown very clearly from a
10046 single trace especially across a busy OLTP system.

GLOC 2019

Compare and Contrast on 10046 tracing versus AWR/ADDM/ASH.

ADDM and AWR work automagically. They work from the inside of the
database while trying to figure out whats going. Kind of like parents
hosting a teenage party in the basement? Keeping an ear on the door?
Watching who / what goes in and out?

ASH involves sampling of wait events. Not comprehensive but over a
long enough sample set or a big problem probably may be good enough.

AWR gets a good picture over a period of time.

ADDM is the squeaky wheel the confidential informant.

GLOC 2019

ADDM perspective:
Run it first during problem investigations.
Run it periodically to help identify things that may deserve attention.

ADDM real world experience.
Use it with caution and skepticism. Often it is right on target but
sometimes not worth considering the recommendations.

Most useful when you are familiar with application and the database
characteristics.

AWR helps give details so many details about a time period being looked at.

Remember to concentrate on elapsed time for parts of the application
Important to the business to run fast.

AWR difference report can be used to compare how a system was
performing between significant changes.

10046 tracing still can be useful at times but RTM and ASH and
DBMS_XPLAN may be able to substitute.

GLOC 2019

Activity During the Analysis Period
Total database time was 30685 seconds.
The average number of active sessions was 50.72.

summary of Findings

Description ACctive Sessions Recommendations
Percent of Activity

1 CPU Usage 39.04 | 76.98 2
2 Top SQL Statements 32.15 | 63.38 5
3 "User I/0" wait Class 14.03 | 27.66 0
4 Top Segments by "User I,/0" and "Cluster" 2.82 | 5.56 1
5 PL/SQL Execution 2.51 | 4.94 2|

Findings and Recommendations

Finding 1: CPU Usage) o

Impact is 38.98 active sessions, 76.98% of total actiwvity.

Host CPU was a bottleneck and the instance was consuming 100% of the host CPU.
All wait times will be inflated by wait for CPU.

Host CPU consumption was 100%.

Recommendation 1: Host Configuration o
Estimated benefit is 39.04 active sessions, 76.98% of total activity.

Action
Consider adding more CPUs to the host or adding instances serving the
database on other hosts.

Action
Also consider using Oracle Database Resource Manager to prioritize the
workload from wvarious consumer groups.

GLOC 2019

Host CPU
m Load Average Begin | Load Average End %System | %WIO

711.90 6269 699 30.1

Time Model Statistics

+ Total time in database user-calls (DB Time): 26649.9s
+ Statistics including the word "background” measure background process time, and so do not contribute to the DB time statistic
* Ordered by % or DB time desc, Statistic name

Statistic Name % of DB Time

sql execute elapsed time 26,315.74 98.75
DB CPU 7110.79 26.68
PL/SQL execution elapsed time 894.67 3.36
parse time elapsed 62.35 023
hard parse elapsed time 40.49 0.15
connection management call elapsed time 412 0.02

hard parse (sharing criteria) elapsed time 3.52 0.01

Activity During the Analysis Period

Total database time was 1503 seconds.
The average number of active sessions was 2.09.

summary of Findings

Description Active Sessions Recommendations
Percent of Activity
1 Top SQL Statements 1.24 | 59.33 5
2 PL/SQOL Execution .31 | 14.67 3

Findings and Recommendations

Finding 1: Top SQL Statements

Impact 1s 1.24 active sessions, 59.33% of total activity.

SQL statements consuming significant database time were found. These
statements offer a good opportunity for performance improvement.

Recommendation 1: SQL Tuning
Estimated benefit 1s .4 active sessions, 19.33% of total activity.

Action

Run SQL Tuning Advisor on the SELECT statement with SQL_ID
"AuakphduwOw8k" .

GLOC 2019

Recommendation 1: SQL Tuning
Estimated benefit 1s .4 active sessions, 19.33% of total activity.
Action
Run SQL Tuning Advisor on the SELECT statement with SQL_ID
"duakphduwOwsk™.
Related Object
SQL statement with SQL_ID 4uakphduwOw8k.
SELECT * FROM SRE_CORP.VS_SKU WHERE IMAGE_RECNBR = :B1
Rationale
The sSQL spent 100% of 1ts database time on CPU, I/0 and Cluster waits.
This part of database time may be improved by the SQL Tuning Advisor.
Rationale
Database time for this SQL was divided as follows: 100% for SQL
execution, 0% for parsing, 0% for PL/SQL execution and 0% for Java
execution.
Rationale
SQL statement with SQL_ID "4uakphduwOw8k" was executed 2873827 times and
had an average elapsed time of 0.000037 seconds.
Rationale
Top level calls to execute the PL/SQL statement with SQL_ID
"Jaxjdzrjaeny2" are responsible for 75% of the database time spent on
the SELECT statement with SQL_ID "4uakphduwOw8k".
Related Object
SQL statement with SQL_ID 3axjdzrjabny?.
BEGIN :1 := swingbench.storedprocedure3(:2 ,:3); END;

GLOC 2019

Recommendation 2: SQL Tuning
Estimated benefit 1s .22 active sessions, 10.67% of total activity.
Action
Investigate the PL/SQL statement with SQL_ID "39gfcokrlxwm2"” for
possible performance improvements. You can supplement the information
given here with an ASH report for this SQL_ID.
Related Object
SQL statement with SQL_ID 39gfcokrlxwm?.
BEGIN :1 := swingbench.storedprocedure6(:2 ,:3); END;
Rationale
The SQL Tuning Advisor cannot operate on PL/SQL statements.
Rationale
Database time for this SQL was divided as follows: 57% for SqQL
execution, 0% for parsing, 43% for PL/SQL execution and 0% for Java
execution.
Rationale
SQL statement with SQL_ID "39gfcbkrlxwm2" was executed 19225 times and
had an average elapsed time of 0.016 seconds.

GLOC 2019

Recommendation 3: SQL Tuning
Estimated benefit is .45 active sessions, 7.54% of total activity.
Action
Run SQL Tuning Advisor on the SELECT statement with SQL_ID
"g3k6n2jy4g55c”.
Related Object
SQL statement with SQL_ID g3k6bn2jy4g55c.
select a.REPORT_ID, a.REPORT ™AME 3 REPORT TITLF. a RFPORT_TYPE,
a.SHOW TN REPORT_LIST from a, >
G where a.REPORT_NAME = :1 and b.}F =
and a.REPORT_ID = b.REPORT_ID and urrecry
C.USER_LOGINNAME) = UPPER(:2)
Rationale
The SQL spent 100% of its database time on CPU, I/O and Cluster waits.
This part of database time may be improved by the SQL Tuning Advisor.
Rationale
Database time for this SQL was divided as follows: 100% for SQL
execution, 0% for parsing, 0% for PL/SQL execution and 0% for Java
execution.
Rationale
SQL statement with SQL_ID "g3k6n2jy4g55c"” was executed 86 times and had
an average elapsed time of 19 seconds.

An index on UPPER(USER_LOGINNAME) was added

GLOC 2019

WORKLOAD REPOSITORY report for
P T N T N M N

1 22-Jan-17 02:01 11.2.04.0
m—iam—m Memory (GB)
Solaris[tm] OE (64-bit) 255.50
e A e
Begin Snap: 120506 17-Mar-17 10:10:17 19.1
End Snap: 120507 17-Mar-17 10:20:50 874 19.2
Elapsed: 10.55 (mins)
DB Time: 86.39 (mins)

GLOC 2019

Report Summary

Load Profile

" PerSecond | Per Transaction |

DB Time(s): 8.2 0.2
DB CPU(s): 4.0 0.1
Redo size (bytes): 596,055.7 15,339.6
Logical read (blocks): 188,901.1 4,861.4
Block changes: 3,647.3 93.9
Physical read (blocks): 15,253.4 392.6
Physical write (blocks): 682.5 17.6
Read |10 requests: 7,277.4 187.3
Write 10 requests: 560.3 14.4
Read IO (MB): 119.2 3.1
Write 1O (MB): 5.3 0.1
User calls: 955.1 246
Parses (SQL): 250.0 6.4
Hard parses (SQL): 0.1 0.0
SQL Work Area (MB): 51.6 1.3
Logons: 1.2 0.0
Executes (SQL): 1,250.5 32.2
Rollbacks: 0.1 0.0
Transactions: 38.9

GLOC 2019

Top 10 Foreground Events by Total Wait Time

[Event]| Waits_| Total WaitTime (sec) | WaitAvgims) | %DBtme | Wait Class |
DB CPU 2503.2 48.3

db file sequential read 4,029,110 1706.7 0 32.9 User /O
read by other session 1,907,513 868 0 16.7 User I/O
latch: cache buffers chains 2,104,512 183 0 3.5 Concurrency
direct path read 37,581 181.4 5 3.5 User /O

log file sync 22,531 455 2 .9 Commit

db file parallel read 12,382 31.3 3 .6 User l/O
library cache: mutex X 52,447 4.2 0 .1 Concurrency
eng: TX - index contention 561 28 5 .1 Concurrency
db file scattered read 748 1.3 2 .0 User /O

Wait Classes by Total Wait Time

| WaitClass | Waits | Total Wait Time (sec) Avg Wait (ms} % DB time Avg Active Sessions

User /O 5,991,958 2,790 53.8

DB CPU 2,503 48.3 40
System I/O 106,569 219 2 42 0.3
Concurrency 2,166,508 193 0 3.7 0.3
Commit 22,533 45 2 .9 0.1
Other 5,065 2 0 .0 0.0
Network 487,912 1 Q .0 0.0
Application 101 0 2 .0 0.0
Configuration 7 0 1 .0 0.0

GLOC 2019

SQL Statistics

AWR stuff ..
¢ 501 ordered by Flapsed Time
i}) « SOL ordered by CPU Time
It’s fairly straight forward « SOL ordered by Gets
most of the time prioritizing and * SQL ordered by Reads

« SOL ordered by Executions

+» S0L ordered by Parse Calls

* S0l ordered by Sharable Memory
Look for SQL using the most « 5QL ordered by Version Count

Elapsed Time. » Complete List of SQL Text

attacking an AWR report ..

Look for SQL using the most CPU time
Look for SQL doing the most logical reads
Look for SQL doing the most physical reads
For SQL that loooooks expensive

Contrast it with how many times it was executed

GLOC 2019

SQL ordered by Elapsed Time

Resources reported for PL/SQL code includes the resources used by all SQL statements called by the code.

% Total DB Time is the Elapsed Time of the SQL statement divided into the Total Database Time multiplied by 100
%Total - Elapsed Time as a percentage of Total DB time

%CPU - CPU Time as a percentage of Elapsed Time

%I0 - User I/O Time as a percentage of Elapsed Time

Captured SQL account for 96.1% of Total DB Time (s): 26,650

Captured PL/SQL account for 21.0% of Total DB Time (s): 26,650

Elapsed Time (s) m Elapsed Time per Exec (s) %CPU SQL id SQL Module |

7,468.54 124476 28.02 27.41 26.08 dzrésa3gcrbpk JDBC Thin Client
4,186.65 48 87.22 1571 23.05 45.77 fdégddbwdnxzk JDBC Thin Client
3,949.73 6 65829 1482 21.26 60.93 5634b4d50fn14 JDBC Thin Client
2,370.64 43 49 39 8.90 2203 47.35 c4v9hdfhzhxv? JDBC Thin Client
1,819.45 49 3713 6.83 2439 43.78 95xg0brm00v9p JDBC Thin Client
1,501.44 15 100.10 563 3169 000 b083asiimrpmt JDBC Thin Client
1,451.35 1 1,451.35 545 19.24 68.94 4fb67h7gs8kpn JDBC Thin Client
719.75 6,716 0.11 270 5867 0.01 cj9ydsx25tkg0 JNRC Thin Cliant
631.97 1 631.97 237 2481 37.58 9nvOsvfhkalad u (TNS V1-V3)
607.31 0 228 26.37 28.21 gfv7shdgpOuv3 JDBC Thin Client
606.73 0 228 1554 73.48 4ad4gn6vapy90t JDBC Thin Client
606.38 0 228 13.79 81.93 85vrx4zx09b3v JDBC Thin Client
606.26 0 227 26.57 25.23 19h09bfyzg53x DBMS_SCHEDULER
550.58 22 2503 207 2169 14.92 9ftipgwnc8pns JDBC Thin Client
47981 3 159.94 1.80 2456 16.35 3b1hr9jfnwd8u DBMS_SCHEDULER
372.06 186,222 0.00 140 2358 15.05 g3vncnz9gd7p0 DBMS SCHFEDULER
336.22 17 19.78 126 3571 0.00 8p529wlymnfpq (TNS V1-V3)
322.06 2 161.03 121 3210 0.01 4ccbneyvq7br7 JDbC 1hin Client
31592 2,767 0.11 119 5540 0.00 cwgtargc65kgg JDBC Thin Client
285.55 14 20.40 1.07 34.47 0.00 09scdtr66qcjd (TNS V1-V3)

GLOC 2019

SQL ordered by Gets

* Resources reported for PL/SCQL code includes the resources used by all SQL statements called by the
s Total Buffer Gets: 303,242 963

» Captured SCQL account for 60.3% of Total

GLOC 2019

12,109 487 4,036,435 67 3.99 458 46 605.56 |1gb7j0gigsbca
11,897,530 7 1,699,647 14 3.92 332.04 57473 |0rbycbsqtudbk
9,530,239 552 17.264 .93 314 b2 64 239.80 |/vvgkadxghOn&
6,250 377 1,562,533 4.00 2.06 70.61 71.43 |gvifvasgvsh03
6,198,227 1,239,572 5.00 2.04 251.42 666.86 (Tbjmtz515bfpn
6,119,456 10 611,945.60 2.02 963.30 176342 (c514dxamén540a
6,078,949 45421 133.84 2.00 11.61 11.31 |thsxdpdrépcbp
5,640,106 264 237 21.34 1.66 3228 88.82 |228dndctbjwhs

o
o
~
O
@)
—
)

Active Session History:

SELECT substr(sq.sql_text,1,100) what_sql,
vs. last_call_et,
vs.sql_1id,
vs.sid, vs.serial#,
vs.username, vs.machine, vs.module
FROM v$session vs,
v¥sqgl sq

WHERE vs.status = "ACTIVE'
AND Vvs.type <> 'BACKGROUND'
AND vs.schemaname <> '8sYS’
AND vs.sqgl_1id = sg.sql_1id

AND vs.sgl_child_number sq.child_number

GLOC 2019

V$SESSION
V4SESSION_WAIT

VSACTIVE_SESSION_HISTORY

MMON Lite
(MMNL)

GLOC 2019

\ DBA_HIST_ACTIVE_SESS_HISTORY
Q

Write
1 outof 10
samples

Circular buffer
in SGA

(2MB per CPU)

Every
1 hour
or
out-of-space

Variable
length rows

There are so many GREAT ASH presentations around
but some of the ones to not miss include:

http://www.ooug.org/wp-
content/uploads/2016/05/Tanel_Poder_Active_Session_History_
seminar.pdf

Aka Getting the Most out of Oracle’s Active Session History

Tanel Poders ASH session snapper
http://tech.e2sn.com/oracle-scripts-and-tools/session-snapper

Tim Gormans RDBMS Forensics Troubleshooting Using ASH

http://evdbt.com/download/presentation-rdbms-forensics-
troubleshooting-using-ash/

This presentation should make you think of Active Session History as
something like queryable trace information captured and stored within
the database.

Plus of course anything by Ric Van Dyke!
GLOC 2019

I find the ASH script | tend to use the most just looks for
blockers and waiters:

SELECT ash_data.*, substr(sqlinfo.sql_text,1,70) FROM
(SELECT to_char(ash.sample_time, '"MM/DD/YYYY HH24:MI:SS') when_time, count(¥)
sessions_blocked, ash.event, ash.blocking_session,
ash.blocking_session_serial#, ash.sql_id, ash.sql_opname
FROM DBA_HIST_ACTIVE_SESS_HISTORY ash
WHERE ash.SAMPLE_TIME >= to_date('11/28/2017 08:00", 'MM/DD/YYYY HH24:MI')
and ash.sample_time <= to_date('11/29/2017 11:30", 'MM/DD/YYYY HH24:MI')
-- and ash.event not Ilike 'read by other session%’
and blocking_session is not null
GROUP BY toFchaq(qih.samp1e_time,'MM/DD/YYYY HH24:MI:ss'), ash.event,
ash.sql_id,
ash.sqgl_opname, ash.blocking_session, ash.blocking_session_serial#
ORDER BY 1) ash_data, v$sqlarea sqlinfo
WHERE ash_data.sql_id = sqglinfo.sql_1id
AND sessions_blocked »>= 1
ORDER BY when_time desc

GLOC 2019

WHAT_TIME
03/26/2017 10:25:04
03/26/2017 10:25:04
03/26/2017 10:25:04
03/26/2017 10:25:04
03/26/2017 10:25:14
03/26/2017 10:25:14
03/26/2017 10:25:14
03/26/2017 10:25:14
| 03/26/2017 10:25:26
103/26/2017 10:25:26
| 03/26/2017 10:25:26
| 03/26/2017 10:25:26
03/26/2017 10:25:37
' 03/26/2017 10:25:37
| 03/26/2017 10:25:37
' 03/26/2017 10:25:37
| 03/26/2017 10:25:47
| 03/26/2017 10:25:47
| 03/26/2017 10:25:57

GLOC 2019

BLOCKED EVENT

2 enq:
5 enq:
2 enq:
1 enq:
6 enq:
1 enqg:
10 enq:
7 enq:
10 enq:
9 eng:
1 enq:
11 enq:
11 enq:
10 eng:
1 enq:
13 enqg:
4 enq:
1 enq:
4 enq:

TM - contention
TM - contention
TM - contention
TM - contention
TM - contention
TM - contention
TM - contention
TM - contention
TM - contention
TM - contention
TM - contention
TM - contention
TM - contention
TM - contention
TM - contention
TM - contention
TM - contention
TM - contention
TM - contention

SID
2152
2152
2152
1160
2152
1160
2152
2152
2152
2152
1160
2152
2152
2152
1203
2152
2152
1160
2152

SERIAL#
3493
3493
3493

48891
3493
48891
3493
3493
3493
3493
48891
3493
3493
3493
10071
3493
3493
48891
3493

SQL_ID SQL_OPNAME First 70 character

07s52d0hkktx07 INSERT
55wvsd4ynbp29y UPDATE
3s30h88gyqn09 INSERT
5fka9649ahhnp LOCK TABLE
07s2d0hkktx07 INSERT
5fka9649ahhnp LOCK TABLE
S5wvsd4ynbp29y UPDATE
3530h88gyqn09 INSERT
55wvs4ynbp29y UPDATE
3s530h88gyqn09 INSERT
5fka9649ahhnp LOCK TABLE
07s52d0hkktx07 INSERT
3530h88gyqn09 INSERT
55wvsd4ynbp29y UPDATE
d4ns3cttc71tz LOCK TABLE
07s52d0Ohkktx07 INSERT
55wvs4ynbp29y UPDATE
5fka9649ahhnp LOCK TABLE
07s2d0hkktx07 INSERT

INSERT INTO CA_
UPDATE CA_PC_F
insert into CA_PC
LOCK TABLE "PAY
INSERT INTO CA_
LOCK TABLE "PAY
UPDATE CA_PC_F
insert into CA_PC
UPDATE CA_PC_F
insert into CA_PC
LOCK TABLE "PAY
INSERT INTO CA_
insert into CA_PC
UPDATE CA_PC_F
LOCK TABLE "PAY
INSERT INTO CA_
UPDATE CA_PC_F
LOCK TABLE "PAY
INSERT INTO CA_

ASH ... based on sampling ..

It is not comprehensive EVERY EVENT for EVERY SESSION ... just what is
caught doing something at the time of sampling.

Over time though the same guilty parties probably will show up on a
typical system. The more badly behaved a problem is the more often
evidence pointing to the guilty parties will get collected from the sampling.

You can build a resource profile of a SQL statement execution (if it runs
long enough) and see what events are impacting it etc.

Over time and given enough executions of it ... a sampled ASH resource
profile is probably good enough to emulate many parts of what you would
have seen from a 10046 trace.

Not enough time but people have built “10046 trace resource profiler”
tools using ASH data.

GLOC 2019

