

From 10046 to AWR / ADDM / RTM / ASH
Modern Techniques for Diagnostics

John Hurley
Senior Database Developer
Federal Reserve Bank of Cleveland

Twitter handle: @grumpyolddba
Email: hurleyjohnb@yahoo.com

Working with Oracle for 20 years Oracle Ace
I attend one or two conferences a year
Retired President of Northeast Ohio Oracle Users Group
NEOOUG
Great Lakes Oracle Conference in late May 2018

Outside interests:
Running / SJA cross country team / Music / Science Fiction
Learning to play guitar

mailto:hurleyjohnb@yahoo.com

GLOC 2019

Agenda for presentation:

• My experience when I started working with Oracle

• A history of built in database instrumentation within Oracle

software including some of the tools and approaches

available at various stages

• An emphasis on critical ideas and context plus a few

tips/tricks on how to maybe follow the yellow brick road

• 10046 tracing overview / methodology / some details

• It’s about time

• AWR/ADDM/RTM

• ASH

GLOC 2019

GLOC 2019

GLOC 2019

GLOC 2019

GLOC 2019

My transition from IBM Mainframe environment to Oracle

database:

Several of the companies that I had worked for doing mainframe

work had documented transaction processing times for their critical

lines of business.

Does anyone still do this anymore? I hope so but I don’t see that

much anymore.

How fast does it have to be? Is anyone screaming about it?

I was confused about how to solve oracle performance problems

the tools that I had in the mainframe world (CICS / IMS) were

gone.

GLOC 2019

GLOC 2019

GLOC 2019

GLOC 2019

Connor McDonalds “pick a cache hit buffer

ratio” script.

All we have to do is put in a sql statement that chews

some CPU and time and does another 89k consistent

gets and bingo!

GLOC 2019

Even in the early days of Oracle Performance Tuning some

smart people were doing things a lot better.

V$SESSION

How many ACTIVE sessions that are not BACKGROUND are

running at 9 am / 10 am / 1 pm / 2 pm …

What SQL shows up in these ACTIVE sessions

How long does it take these SQL statements to process

GLOC 2019

GLOC 2019

GLOC 2019

DBMS_XPLAN formatted:

GLOC 2019

Oracle Performance Tuning:

Cary Millsap and Method R provided a light at the end

of the tunnel.

“Optimizing Oracle response time is, for the most part, a

solved problem.”

Method R based on instrumentation provided via the

Oracle Wait Interface.

Method R is a Repeatable Methodology!

No more silver bullets. You don’t need the Lone

Ranger.

Method R emphasizes no it DEMANDS that you pay

attention to pretty much only response time.

GLOC 2019

GLOC 2019

Notes from Chapter 11:

Clues to the response time components that show up in resource profiles

associate directly to instrumented kernel code

Tanel Poder: “It’s all 1 big C program (mostly)”

V$EVENT_NAME

+ CPU service (CPU TIME)

+ unaccounted for time (usually very minor)

Number of wait events in various Oracle releases?

7.3.4 106 wait events

10.0.1 500

11.2.0.4 1365 of them

GLOC 2019

GLOC 2019

GLOC 2019

Method R summary:
Find out what you need to investigate for performance anomalies

Determine how you need to trace the critical sections of the problem

Turn on the tracing

Recreate the issue while trace is running

Turn off the trace

BINGO You have a medium to large file with lots and lots of wait event

information and the SQL involved.

Put the trace file through some kind of resource profiler (tkprof / hotsos or

method r profiler / MR trace / orasrp / others)

Investigate by looking at wait event diagnostics for things taking the most

time (the most response time).

Top down approach: work on the items/symptoms/wait events causing the

most delays (causing the longest response time).

GLOC 2019

Tim Hall:

https://oracle-base.com/articles/misc/sql-trace-10046-

trcsess-and-tkprof

It can be a little tricky getting a trace started and stopped at times. Lots of

different ways to invoke it.

OEM and/or Toad and/or Cloud Control can be used (if access level is high

enough) to invoke tracing.

Diagnostics and instrumentation invoked from the inside while the code is

executing cause information to be written out to a trace file.

How do you digest the output of a trace file? Well you can eyeball it line by line

but not recommended.

A resource profiler takes 10046 trace file output and helps make it actionable.

TKPROF or Method R Profiler … Toad even has something now? Free

software OraSRP …

GLOC 2019

Triggers are evil?

GLOC 2019

Trick #1 … Sample login trigger to turn on trace …

CREATE OR REPLACE TRIGGER USER_TRACE_TRG
AFTER LOGON ON DATABASE
DECLARE

v_program varchar2(48);
v_audsid NUMBER;
CURSOR get_sid IS

SELECT sid, serial#, osuser, machine, program FROM v$session WHERE audsid=v_audsid;
v_sid_rec get_sid%ROWTYPE; -- v_sid NUMBER; v_serial NUMBER;

BEGIN
v_audsid := sys_context('USERENV','SESSIONID');
OPEN get_sid;
FETCH get_sid INTO v_sid_rec;
IF get_sid%FOUND THEN

v_program := v_sid_rec.program;
END IF;
CLOSE get_sid;
IF (instrv(v_program,'SQL*Plus') > 0) THEN -- instr(v_program,'ocpppp29') > 0

-- IF SYS_CONTEXT('USERENV','HOST') = ‘*******' AND
SYS_CONTEXT('USERENV','SESSION_USER') = ‘*******' THEN

-- EXECUTE IMMEDIATE 'alter session set statistics_level=ALL';
-- EXECUTE IMMEDIATE 'alter session set max_dump_file_size=UNLIMITED';
EXECUTE IMMEDIATE 'alter session set events ''10046 trace name context forever, level

12''';
-- sys.dbms_system.set_ev(v_sid,v_serial,10046,12,'');

END IF;
EXCEPTION

WHEN OTHERS THEN NULL;
END;
/

alter trigger SYS.USER_TRACE_TRG DISABLE;

GLOC 2019

Things have changed a lot since my Oracle early days

A lot of the heavy lifting involved in accessing relevant

diagnostics has been internalized in the Oracle code base

Licensing: Diagnostics pack and Tuning pack

10g brings AWR and ADDM and ASH

11g lots of improvements in AWR/ADDM/ASH

11g has RTM

RTM compared to a 10046 trace?

ASH compared to a 10046 trace?

GLOC 2019

ADDM

and

AWR

reports

Real Time Monitoring

GLOC 2019

GLOC 2019

GLOC 2019

GLOC 2019

GLOC 2019

GLOC 2019

In 11g forward Oracle automatically monitors SQL statements if they are

run in parallel, or consume 5 or more seconds of CPU or I/O in a single

execution.

This allows resource intensive SQL to be monitored as it is executing, as well as giving

access to detailed information about queries once they are complete.

SQL monitoring requires the STATISTICS_LEVEL parameter to be set to 'TYPICAL' or

'ALL', and the CONTROL_MANAGEMENT_PACK_ACCESS parameter set to

'DIAGNOSTIC+TUNING'.

MONITOR Hint

The MONITOR hint will force on SQL monitoring for statements

SELECT /*+ MONITOR */ d.dname, WM_CONCAT(e.ename) AS employees

FROM emp e

JOIN dept d ON e.deptno = d.deptno

GROUP BY d.dname

ORDER BY d.dname;

Also if you have SQL statements you don't want to monitor

you can use the NO_MONITOR hint

GLOC 2019

Rows in v$sql_monitor may not be around for very long (my

experience seems to be an hour at most often less) after

monitoring has completed. While the status is executing you

can look at RTM information while it is “changing”.

select distinct status from v$sql_monitor

With the right access you could “copy off”

relevant rows from sql_monitor into your own

table and research exciting items offline.

I think (underscore sqlmon_recycle_time) defaults to 60 seconds is

minimum retention time after execution ends.

alter session set "_sqlmon_max_planlines" = 500; 300 is default

GLOC 2019

Use RTM as a substitute for 10046 trace:

GLOC 2019

GLOC 2019

GLOC 2019

GLOC 2019

GLOC 2019

GLOC 2019

Aggregated information or session specific detailed information?

AWR reports work from between snapshots. They are “average” based

they are aggregated information for the most part.

You can’t extrapolate detail from an aggregate. You cannot necessarily

determine what’s wrong with an individual program by examining only the

system-wide statistics for an instance.

ADDM is “AI” mined aggregated data targeted for identifying performance

problems … sort of a resource profile for the database instance.

10046 is detail info resource profile makes it actionable.

RTM is detail information so actionable.

ASH is specific detailed information for sessions “doing things” if they are

doing things (using CPU / waiting for something) when sampled. Then

you get when data moved from memory to disk a sample of a sample.

GLOC 2019

Compare and Contrast on 10046 tracing versus AWR/ADDM/ASH

A 10046 trace works from the inside of the session being traced and

writes information out to external file. It is comprehensive and catches all

of the (currently instrumented) wait events.

It can be complicated and cumbersome to get the access and/or turn

tracing on and off and/or get access to the trace file output.

RTM a lot like 10046 Trace but runs automagically.

A potential weakness using a 10046 trace is that while it shows

“everything” that impacted your session it does not show “what impacts

your session” had on other sessions.

Locking and blocking behavior may not be shown very clearly from a

10046 single trace especially across a busy OLTP system.

GLOC 2019

Compare and Contrast on 10046 tracing versus AWR/ADDM/ASH.

ADDM and AWR work automagically. They work from the inside of the

database while trying to figure out whats going. Kind of like parents

hosting a teenage party in the basement? Keeping an ear on the door?

Watching who / what goes in and out?

ASH involves sampling of wait events. Not comprehensive but over a

long enough sample set or a big problem probably may be good enough.

AWR gets a good picture over a period of time.

ADDM is the squeaky wheel the confidential informant.

GLOC 2019

ADDM perspective:

Run it first during problem investigations.

Run it periodically to help identify things that may deserve attention.

ADDM real world experience.

Use it with caution and skepticism. Often it is right on target but

sometimes not worth considering the recommendations.

Most useful when you are familiar with application and the database
characteristics.

AWR helps give details so many details about a time period being looked at.

Remember to concentrate on elapsed time for parts of the application
important to the business to run fast.

AWR difference report can be used to compare how a system was
performing between significant changes.

10046 tracing still can be useful at times but RTM and ASH and
DBMS_XPLAN may be able to substitute.

GLOC 2019

GLOC 2019

GLOC 2019

GLOC 2019

GLOC 2019

GLOC 2019

An index on UPPER(USER_LOGINNAME) was added

GLOC 2019

GLOC 2019

GLOC 2019

GLOC 2019

AWR stuff …

It’s fairly straight forward

most of the time prioritizing and

attacking an AWR report ..

Look for SQL using the most

Elapsed Time.

Look for SQL using the most CPU time

Look for SQL doing the most logical reads

Look for SQL doing the most physical reads

For SQL that loooooks expensive

Contrast it with how many times it was executed

GLOC 2019

GLOC 2019

GLOC 2019

GLOC 2019

Active Session History:

GLOC 2019

GLOC 2019

There are so many GREAT ASH presentations around

but some of the ones to not miss include:

http://www.ooug.org/wp-

content/uploads/2016/05/Tanel_Poder_Active_Session_History_

seminar.pdf

Aka Getting the Most out of Oracle’s Active Session History

Tanel Poders ASH session snapper

http://tech.e2sn.com/oracle-scripts-and-tools/session-snapper

Tim Gormans RDBMS Forensics Troubleshooting Using ASH

http://evdbt.com/download/presentation-rdbms-forensics-

troubleshooting-using-ash/

This presentation should make you think of Active Session History as

something like queryable trace information captured and stored within

the database.

Plus of course anything by Ric Van Dyke!

GLOC 2019

I find the ASH script I tend to use the most just looks for

blockers and waiters:

GLOC 2019

GLOC 2019

ASH … based on sampling ..

It is not comprehensive EVERY EVENT for EVERY SESSION … just what is

caught doing something at the time of sampling.

Over time though the same guilty parties probably will show up on a

typical system. The more badly behaved a problem is the more often

evidence pointing to the guilty parties will get collected from the sampling.

You can build a resource profile of a SQL statement execution (if it runs

long enough) and see what events are impacting it etc.

Over time and given enough executions of it … a sampled ASH resource

profile is probably good enough to emulate many parts of what you would

have seen from a 10046 trace.

Not enough time but people have built “10046 trace resource profiler”

tools using ASH data.

