
Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Connection Pool Sizing Concepts

Toon Koppelaars
Real-World Performance
Oracle Server Technologies

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

About Me

• Part of Oracle eco-system since 1987
– Have done and seen quite a lot of application development

– Database design, SQL and PL/SQL

• Big fan of “Using Database As a Processing Engine”
– Not just as a persistence layer

• Member of Oracle’s Real-World Performance Group

3

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Topics

• Web Application Architecture

– Application Threads, Connection Pool, Connection Queueing

• From CPU Oversubscription to Database Oversubscription

• Sizing Your Connection Pool

–%Idle-Time in Foreground Processes

• Recommendations

4

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Application Architecture

• N-tier architecture has been most common architecture past 15 years

• Widely used by architects, designers and developers

• Standard for most Java EE applications

• Architecture involves:

– Browsers with html (and JavaScript)

–Web server that takes care of http(s) traffic

– Application server that runs application code

– Database server that provides data persistency services

5

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Web: Past 15 Years

6

Database Server

H
T
T
P
-
S
R
V

Application Server

Dedicated Server

Dedicated Server

Dedicated Server

JVM

C1

Connection pool

C2

C3

Number of pre-
spawned connection
objects each with a
login into database

Each connection object is
logged into database

using dedicated server
aka foreground process

Multi-threaded JVM
(has thread pool)

Pre-loaded
application code

(ear/jar/war files)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Connection Pool Configuration (WLS)

7

Console->Services->Data Sources

• When you start application server, WLS will initialize connection
pool in JVM

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Web: Past 15 Years

8

Database Server

H
T
T
P
-
S
R
V

Application Server

Dedicated Server

Dedicated Server

Dedicated Server

JVM

C1

Connection pool

C2

C3

Much fewer connections/
processes/sessions will be shared
over much more (browser) clients

Lots of browsers sharing only a
few connections into database:

how does that work?

These are
time-shared

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Browser Requests Cause Working Application Threads

9

Eight threads currently
processing requests on

application server

Eight browsers
currently waiting for
request to complete

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Introducing Term: Connection Reservation

• Time during which thread has claimed one of the connections from
pool to do database work

10

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Connection Reservation

11

JVM

C1 C2 C3

JDBC

S1 S2 S3

Thread 6 services request from browser client

T1 T2 T3 T4 T5 T6 T7 T8

Connection pool

Timeline T6

Java thread on CPU
On network

Foreground on CPU

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Connection Reservation

12

JVM

C1 C2 C3

JDBC

S1 S2 S3

Executes business logic and
needs to call database

T1 T2 T3 T4 T5 T6 T7 T8

Connection pool

Timeline T6

Java thread on CPU
On network

Foreground on CPU

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Connection Reservation

13

JVM

C1

C2

C3

JDBC

S1 S2 S3

T1 T2 T3 T4 T5 T6 T7 T8

Connection pool
C2 now unavailable for

other threads

Thread 6 requests and acquires
arbitrary free connection from pool

Timeline T6

Acquire
connection

Java thread on CPU
On network

Foreground on CPU

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Connection Reservation

14

JVM

C1

C2

C3

JDBC

S1 S2 S3

T1 T2 T3 T4 T5 T6 T7 T8

Connection pool

Thread 6 submits SQL via C2
(T6 now blocked on method call of C2)

DB session S2 wakes up
from idle state and
starts work on SQL

Timeline T6

Acquire
connection

Java thread on CPU
On network

Foreground on CPU

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Connection Reservation

15

JVM

C1

C2

C3

JDBC

S1 S2 S3

T1 T2 T3 T4 T5 T6 T7 T8

Connection pool

S2 executes SQL
statement

Timeline T6

Acquire
connection

Java thread on CPU
On network

Foreground on CPU

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Connection Reservation

16

JVM

C1

C2

C3

JDBC

S1 S2 S3

T1 T2 T3 T4 T5 T6 T7 T8

Connection pool

S2 sends result
back to C2

S2 idle again

TimelineT6

Acquire
connection

Java thread on CPU
On network

Foreground on CPU

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Connection Reservation

17

JVM

C1

C2

C3

JDBC

S1 S2 S3

T1 T2 T3 T4 T5 T6 T7 T8

Connection pool

T6 wakes up, gets
results from C2

Timeline T6

Acquire
connection

Java thread on CPU
On network

Foreground on CPU

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Connection Reservation

18

JVM

C1 C2 C3

JDBC

S1 S2 S3

T1 T2 T3 T4 T5 T6 T7 T8

Connection pool

T6 releases C2
back to pool

C2 available again for
other browser’s threads

Timeline T6

Acquire
connection

Release
connection

Java thread on CPU
On network

Foreground on CPU

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Connection Reservation

19

JVM

C1 C2 C3

JDBC

S1 S2 S3

T1 T2 T3 T4 T5 T6 T7 T8

Connection pool

Timeline T6

Acquire
connection

Release
connection

Java thread on CPU
On network

Foreground on CPU

Sends results
back to browser

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Connection Reservation

20

JVM

C1 C2 C3

JDBC

S1 S2 S3

T1 T2 T3 T4 T5 T6 T7 T8

Connection pool

Timeline T6

Acquire
connection

Release
connection

Java thread on CPU
On network

Foreground on CPU

T6 ready for other
browser request

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Timesharing Connections / Foregrounds

21

Timeline T6

Acquire

Release

S2

S2 exclusively
in use by T6

JVM

C1 C2 C3

JDBC

S1 S2 S3

T1 T2 T3 T4 T5 T6 T7 T8

Connection pool

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Timesharing Connections / Foregrounds

22

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Connection Pool At Full Capacity

24

JVM

C1 C2 C3

JDBC

S1 S2 S3

T1 T2 T3 T4 T5 T6 T7 T8

Connection pool

What if thread T1
wants to do DB

work?

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

What If 4th Thread Wants to Do Database Work?

• Depends on how you have configured your connection pool

A. Your pool is configured to dynamically grow (max # of connections is
not yet reached)

1. New 4th connection created and handed out to thread T1

B. Your pool has reached max # of connections configured
Two options:

2. Your thread will get Java exception

3. Your thread will be put to sleep, until connection becomes available

25

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Connection Pool Configuration (WLS)

26

Console->Services->Data Sources

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

What If 4th Thread Wants to Do Database Work?

• Developers do not want:

– Their threads to receive an exception from connection pool manager

– Their thread to be put “on-hold” by connection pool manager

• So we nearly always see connection pools that can grow to very large
of connections

• We call these: dynamic connection pools

– These can cause database to become CPU-oversubscribed

27

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Topics

• Web Application Architecture

– Application Threads, Connection Pool, Connection Queueing

• From CPU Oversubscription to Database Oversubscription

• Sizing Your Connection Pool

–%Idle-Time in Foreground Processes

• Recommendations

28

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

#1 Issue in Real-World: Database Oversubscription

• You might be having this problem without knowing it

• Majority of customers that come to us with escalations, experience this

• It’s not obvious that symptoms point to this problem

• Symptoms might lead you down wrong path

• And spend a lot of time with support, without getting anywhere

29

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

CPU Oversubscription

30

DB Time

User CPU

Run-queue waits

Contention in DB

#cores in
DB server

Sys CPU # active sessions

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Database Oversubscription: Likely Scenario

31

active sessions

DB Time

#cores

CPU overhead in OS

CPU overhead in DBMS

Ever increasing
waits in DBMS

Adding sessions
won't increase DB-

CPUUser CPU

Run-queue waits

Status quo here
Observation: CPU available!

And lots of DB-waits

DB-waits will lead you
down wrong path

Available CPU will invite you
to further increase #threads

and connection pool

Contention in DB

#cores in
DB server

Sys CPU

Waits increase
disproportionally

under CPU starvation

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Only One Thing You Should Do

32

active sessions

#cores

Useful work done

Run-queue waits

Contention in DB

#cores in
DB server

Decrease and cap
#connections to get
more useful work

done

DB Time

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Example Database Oversubscription

33

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Moral…

• It is far better to have threads queue for pooled connection
Than,
It is for database to be oversubscribed

34

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

The Big Question

• What is the appropriate size for my connection pool?

• So that:

– Database is near CPU oversubscription

– And application threads are willing to queue

• Too small connection pool size will cause database to have unused capacity

• Too large connection pool size will get us in database oversubscription land

35

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Network Network Database

What Is Your Foreground Doing?

Application

End User

Breakdown during connection reservation

Time Line

Query

Query

Update

Update

Update
commit

conn = Datasource.getConnection

conn.close()

Fast (simple SQL)SlowNoticeable

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Breakdown of Your Foreground Session Time

37

Breakdown during connection reservation

Time Line

SQL

Application-server code Network

15% busy

85% idle

2% busy

98% idle

We see this more in the real world
Very high %idle-time in foregrounds

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Implication of High %Idle Time in Foreground Session

• So your SW-architecture keeps database session busy only 2% of time

• What does that imply?
– You would need 50 sessions to get one DB-core busy (= 50 connections in conn.pool)

– If you have 32 cores in your database server:
 You would need 1600 sessions to get all cores busy

• This is assuming that all your DB Time is DB CPU!
– You likely need even more connections/sessions

38

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Connection Pool Sizing

• 0% FG idle time inside reservation  1 connection per core required

• 80% FG idle time inside reservation  5 connections per core required

• 90% FG idle time inside reservation  10 connections per core required

• 95% FG idle time inside reservation  20 connections per core required

• 98% FG idle time inside reservation  50 connections per core required

• Appropriate connection pool size := * #cores

X = % FG Idle Time inside reservation

39

100
100 - X

This drives
connection pool size!

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Waiting in Mid-Tier Versus Waiting in DB-Tier

• Again:
you need to configure threads are willing to queue for connection

• The formula is good starting point for appropriate connection pool size

• Let’s plot that curve

40

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Basic Formula Upper Bound Connection Pool Size
10 Core Database Server

41

Sizing connection
pool above curve

just introduces
more overhead Sizing connection

pool under curve
introduces server

idle time

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Connection Pool Sizes in Real-World

42

What we often see

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Our Rule-of-Thumb: <10 Times Number of Cores

43

We assume your average % idle time
inside reservation is anywhere

between 0% and 90%

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Why Shrinking Connection Pool Won't Always Work

• If you have substantial %idle time inside connection reservation
And you are not aware of that

• Shrinking might disable full use of available CPU power on DB-server

– And so, won't give expected result

– Your only option then is to change the application and decrease %idle time during
reservation

44

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Toon, That’s All Very Interesting and All, But …

• What the heck is the “%Idle Time Inside Reservation” for my application?

45

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

A Challenge For You

• Ideally you’d want this to be instrumented by Java developers in their code

• To create awareness with them too

• However, can you as DBA get a clue?

46

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Finding %Idle Time Inside Reservation

• Assuming you’re still in the safe zone
– Use test-system, or “quiet” prod-system

• Just do a SQL-trace of one of connection-pool sessions for a minute during
representative workload and investigate trace-file

• Likely you’ll be able to spot “acquire” and “release” events via some repetitive
pattern. For example:
– “Release” typically would be XCTEND (commit or rollback)

– “Acquire” typically starts with “timestamp” during quiet period
Or immediately after XCTEND

Or you can spot it via some initialization statement

47

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Example Trace File

48

Acquire connection object

Release
Acquire

Release

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Approximating %Non-DB-Time Inside Reservation

• Investigate one acquire-release block in trace-file

– Determine DB-time by summing all ”e=“ values (dep=0 only)

– Determine Elapsed time from difference between first and last “tim=“ values
• Add e-value from first tim value, as tim values represent “time when completed”

• %Non-DB-time-inside-reservation is: ((Elapsed – DB-Time)/Elapsed) * 100

49

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Approximating Think-Time-Inside-Reservation

50

Difference is:
2,237us

Difference is:
2,237us + 17us

= 2,254us

Sum is:
1,053us

((2,254 – 1,053)/2,254)*100% =
53% approximate non-DB-time inside reservation
 Connection pool size about 2X number of cores

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

A Word on Batch Programs

• Context so far has been: web applications with many browser users

• Batch programs:

– Developers usually create some kind of do-it-yourself parallelism

– Configurable number of threads to get work done

–We see comparable behavior of these threads wrt. connection pool usage
• They loop and do a transaction per iteration

• For each transaction they acquire/release a connection

– Same math applies

51

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Recommendations Connection Pool Sizing

• It all starts by knowing your (average) %Idle Time of foregrounds

52

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Recommendations Connection Pool Sizing

• It all starts by knowing your (average) %Idle Time of foregrounds

• Assuming CPU-bound, formula is a good starting point

• Set minimum/maximum/initial # of connections, all to same value

– And configure threads to wait for connection to become available

53

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Recommendations Connection Pool Sizing

• It all starts by knowing your (average) %Idle Time of foregrounds

• Assuming CPU-bound, formula is a good starting point

• Set minimum/maximum/initial # of connections, all to same value

– And configure threads to wait for connection to become available

• As DBA you can maybe decrease network-time component to get lower
%idle time

54

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Recommendations Connection Pool Sizing

• It all starts by knowing your (average) %Idle Time of foregrounds

• Assuming CPU-bound, formula is a good starting point

• Set minimum/maximum/initial # of connections, all to same value

– And configure threads to wait for connection to become available

• As DBA you can maybe decrease network-time component to get lower
%idle time

• On your next application development effort try to be aware, or better in
control, of Acquire/Release cycles, and (Java) code execution during these
cycles

• Your solution should minimize %Idle Time of foregrounds

55

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Questions?

56

Twitter: @ToonKoppelaars

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 57

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 58

