SmartDB: A Database Centric Approach to
Application Development

Part 1: What?

Toon Koppelaars
Real-World Performance
Oracle Server Technologies

ORACLE

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

About Me

* Part of Oracle eco-system since 1987

— Have done and seen quite a lot of application development
— Database design, SQL and PL/SQL

* Big fan of “Using Database As a Processing Engine”
— Not just as a persistence layer

Applied

* Member of Oracle’s Real-World Performance Group m%tgfan,;gggs

Professionals

Lex de Haan and Toon Koppelaars

ORACI-E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 3

Terminology Over The Years

* Thick DB
* Translated from Dutch, first used in “A First JDeveloper Project”, Oracle World 2002

Fat DB

* Because “thick” has other meanings

“Phat” DB
* More hip

The Helsinki Declaration
* Java-conference @Helsinki, resulted in TheHelsinkiDeclaration.blogspot.com

Using database as “Processing Engine”
* That’s what we call it inside Real-World Performance group

* SmartDB

* Joint PM proposal new name

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Agenda This Afternoon
* Part 1: SmartDB, What Is It and Why Would You Want to Consider It?

— Break

* Part 1: SmartDB, What Is It and Why Would You Want to Consider It?
— Break

* Part 2: SmartDB, How, What Are Critical Success Factors?

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Roadmap Part 1

Business Logic

What Is SmartDB?

Some History and Observations
Issues With Other Approaches

Debunking Performance and Scalability Argument

Closing Remarks

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Roadmap Part 1

Business Logic

What Is SmartDB?

Some History and Observations
Issues With Other Approaches

Debunking Performance and Scalability Argument

Closing Remarks

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Context of This Presentation

* Data intensive transactional business applications
— A Data store as foundation Retrieval Manipulation
— Relational tables in Oracle database

— Much business functionality on top
* Retrieval of data (select)
* Manipulation of data (insert/update/delete)

— User interfaces, batches, reports, services to other application systems
— Potentially many users

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Transactional Business Applications

User Software .
Interfaces | Interfaces * Conceptually 3 tiers

— Exposed functionality via services

* GUI's for human interaction

* REST, or otherwise, for software interaction
— Internals

* Business logic
* Data store, relational database

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Transactional Business Applications

* A big component of these applications is “Business Logic”

* What is “Business Logic”?

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

10

Wiki
Business logic

From Wikipedia, the free encyclopedia

In computer software, business logic or domain logic is the part of the
program that encodes the real-world business rules that determine how
data can be created, displayed, stored, and changed. It is contrasted with

the remainder of the software that might be concerned with lower-level
details of managing a database or displaying the user interface, system

infrastructure, or generally connecting various parts of the program.

Code with embedded
data access
statements in it

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 11

Example Business Logic: Code With Embedded SQL

begin . .

-- . Conditional if-then-else and
select o.LIMIT into 1_limit ;J Single-row data access] looping logic
from ORDERS o
where o.ORDER# = 1_order#;
1 high risk := (1 _limit > 2000); . . imiti
1_high_ (1_) ! Business logic] !Drlmltlve datg access
if 1_high risk (single table, single row)
then

for r in (select * from ORDERLINES ol where ol.ORDER# = 1_order#) <[Row fetChing (data aCCESS)]

loop

if r.STATUS = 'OPEN' : :
Business | then :! Business logic]
k)gic if r.discount > 1@ then 1_discount := r.discount - 10; else 1_discount := @; end if;
update ORDERLINES ol set o0l.DISCOUNT = 1 _discount .
where ol.ORDERLINE# = r.orderline#; Row-by-row updatlng (data access)
end if;

end loop;

end if;
end;

O c C ®
R I-e Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 12

' ic: ' Set-based dat i
Example Business Logic: All in SQL szt fff?c?\f’sréfess'”g}

update ORDERLINES ol set ol.DISCOUNT = greatest(ol.DISCOUNT - 10, ©)

where ol.ORDER# = 1 order#
and ol.STATUS = 'OPEN' References multiple tables
and exists(select 'high-risk!’ Affects multiple rows

from ORDERS o
where o.ORDER# = 1 order# and o.LIMIT > 2000)

Point to be made:

* Business logic can appear:
— As code-lines in some programming language that issues simple (poor) SQL

— Inside (set-based) SQL itself

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 13

My Take on "Business Logic"

* Code that composes(*) queries and executes them

* Code that composes(*) transactions and executes them

— *: The way the business requires this to be done

* Queries and transactions (sequence of DML statements) can be
— Primitive: row-by-row, or
— Rich: set-based

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

14

Roadmap

ORACLE

Business Logic

What Is SmartDB?

Some History and Observations

Issues With Other Approaches

Debunking Performance and Scalability Argument

Closing Remarks

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

15

We See Two Mutually Distinct Approaches

-~

Interfaces
L

User Software
Interfaces

-,

o

Business
SQL Logic
sqL SaL sar>Qk

~

DBMS = Persistence Layer

"NoPlsgl" Approach

ORACLE

User Software
Interfaces | Interfaces

DBMS = Processing Engine

"SmartDB" Approach

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

16

NoPlsql Approach

* Database = persistence layer

* No business logic in database

— PL/SQL is not used
— Set-based SQL is not used

* Some other language outside used for business logic

—Java, .Net, JavaScript, PHP, ...

— Only primitive SQL-statements are submitted
To persist and retrieve rows

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

-

L

Interfaces

User Software
Interfaces

~

~

Business
SQL Logic
sqL SaL saL>At

\J

17

SmartDB Approach

* Database = processing engine

* Business logic is implemented via PL/SQL or User | Software

Interfaces | Interfaces

complex SQL
— All SQL, often set-based, executed from PL/SQL

— Using database in ways it was designed to be used,
ergo “SmartDB"

* Database exposes API's for user-interfaces
More on this in part 2

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 18

Roadmap

ORACLE

Business Logic

What Is SmartDB?

Some History and Observations

Issues With Other Approaches

Debunking Performance and Scalability Argument

Closing Remarks

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

19

My Ride Through Wonderful World of IT

Terminal/host Character-mode GUI's client/server

Block-mode/stateless Stateful client programs Stateless browser Many devices/mobile/always connected

ORACLE’

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 20

Oracle v4, v5, vb Database Documentation

ORACLE" ORACLE" ORACLE®

Volu
5o Two

DBA Guide Guide

SQuuF 1 Ret
erex
Emor Messagesm

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 21

Oracle?7, 8i: Database Documentation

mmmmmgmmmw'm
o -

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

ORACLE

22

http://docs.oracle.com/en/database/

< Home

Cloud

Applications

Middleware

Database

Big Data

Enterprise Manager

Engineered Systems

ORACLE Help Center Database v | Search products n Welcome Toon

Database Documentation

Oracle database products deliver innovative technologies and leading
price/performance, from the enterprise to small workgroups, from the cloud
to mobile devices, from super-clusters to single servers. Oracle's latest
offerings include multitenant cloud services; in-memory real-time data
management and data analysis; secure, intelligent storage solutions;
support for big data and JSON; and more.

Oracle Database

Provides efficient, reliable, and secure data management for enterprise level, mission-critical transactional
applications, guery-intensive data warehouses, and mixed workloads.

All Oracle Database documentation

ORACLE

And of course lots of blogs out there on the internet

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

23

History Observation: End of "SmartDB" Era

- Features available in DB ‘

- DB-features used by /
application development /
Advent of J2EE //
" and MVC frameworks
g // Advent of JavaScript
Q 7 frameworks
- " "
o o 4
2 =\ Collapse of JEE
(C y /
= \\ [/
\ Vv
I I —— — |
1985 1990 1995 2000 2005 2010 2015 2020
Reign of "SmartDB" era Rise of "NoPlIsql" era
DB = processing engine DB = persistence layer

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

24

Why Did Java Become so Popular?

* Many programming languages available on Windows in '90-s
— From Microsoft, and other vendors

— Industry was experiencing ugly 16-bit to 32-bit conversion 4[
* Java seemed simple, had WORA, and developers were cheap

Write Once
Run Anywhere

|

— Object orientated programming (OOP) promised code reusability
— IDE's with method-auto-completion

— Programmer friendly naming conventions and no header files

— C-like syntax, lowering bar for C-programmers

— Offered garbage collection, relieving task of memory management
— Introduced mainstream exceptions

ORACLE

See also: https://www.youtube.com/watch?v=QM1iUe6lofM "OOP is bad"

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

25

https://www.youtube.com/watch?v=QM1iUe6IofM

Why Did Java Become so Popular?

-

Then Sun released J2EE design pattern which

included thin browser, fat mid-tier, DB-as-persistence-layer architecture

Promised scalability by offloading code from DBMS

\Everybody (vendors, community, and academia) jumped on that bandwago

~

v

ORACLE

The rest is history...

Why Did Java Become so Popular?

* Important note to make:

"Java is a good fit for developing data-intensive business logic" is not in
that list...

* All of SmartDB goodness was simply discarded in new millennium

* Only real counter-argument was: "Database is always bottleneck"

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

27

Where Were We at End of 1990's?

* Applications capitalized on database being a processing engine

Ul-only

_ 4 Client:]

Straight procedural business logic
with embedded SQL written by SQL-savvy developers

]

Stored PL/SQL modules and views

Tables typically never accessed directly Proper relational database design J

decorated with declarative constraints

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

28

What Has Happened Since?

Database to only fulfill persistence layer role (bit bucket)

https://

Browser: numhy =
Ul-only - Model-View-Controller (MVC)
) framework era during
@ 15t decade of new millennium
Ul/View-fw

Control-fw e All business logic in
Business-fw P N Java based on

Model-fw hierarchical/network

Persistence-fw S "8 3 G e
JDBC

Bag of tables (to hold object instances)]

Direct access to all tables

ORACLE

often without constraints

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Important Points to Make

* In layered MVC approach SQL is invisible

* Almost always SQL is hidden from developers e
— Object oriented domain models are used :
— Developers invoke methods on objects

— Objects map to tables via ORM tool Ul/view-fw
Control-fw
Business-fw
* ORM's produce single-row, single-table SQL Model-fw
Persistence-fw
— Consequence of this type of architecture JDBC

— Which seems to have been accepted by everyone

ORACLE

Direct access to all tables

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 30

https:/f

Important Points to Make -

Control-fw

. . . . Business-fw

* Layered sw-architectures results in "chatty" applications iodel o _
Many small calls between JDBC and database 5=

Directaccess to all tables

* In early nineties we referred to this as "roundtrips”
— Roundtrips were bad (for performance) then, and still are today —
— Oracle7, with stored PL/SQL, helped us mitigate this
— By moving business logic into database

Stored PLSQL modules and views

Tables typically never accessed directly

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 31

New Paradigm Shift Happening: Java = JavaScript

* Server-side Java MVC-frameworks approach has been ubiquitous

https://

* New architecture is arising: = mhs =
— Browser-side JavaScript (V+C) :
— Server-side JavaScript (M)

— REST to glue it together —
4 Ul/v| WER/)
: : Conndl-fw
— Database still as persistence layer BusinessTw
Model-fw
C. . : : Persistence-fw | JVM
* In a sense, this is just client/server all over again S DBC P

— Responsive Ul running on client (browser)
— Smart data services running on server (JVM)

ORACLE

Direct access to all tables

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 32

Hot Right Now: GraphQL

* Really?

* SQL in disguise

* Instead of n Rest calls from browser to various end-points
* GraphQL does one call to GraphQL “server”

* Server has “knowledge” about domain model

* Server dissects call into n Rest calls to end-points

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

85

Status Quo

* Layered Java MVC frameworks approach has been ubiquitous
— Feature-rich DBMS acts as a persistence layer

— All business logic implemented outside DBMS
Submitting simple SQL only

* New JavaScript frameworks (MVVM), which come and go even more
quickly, seem to maintain persistence layer role for DBMS

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

34

Roadmap

ORACLE

Business Logic

What Is SmartDB?

Some History and Observations

Issues With Other Approaches

Debunking Performance and Scalability Argument

Closing Remarks

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

35

Issues with NoPlsql
1. Stability of technology stack

Development and maintenance cost

Risk of compromised database security and integrity

> W N

Performance and scalability

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

36

Out of Control...

ORACLE

Garabato Kid @garabatokid - Mar 29 v
g - Year 2000: Open Notepad and start coding

- Year 2019:

r
ﬂm GOING
TO START

A SHORT
AND SIMPLE
NEW PROJECT!

AN UNKNOWN AMOUNT OF TIME LATER...

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

37

1 Stability of Technology Stack - MVC

* Choice of Java MVC frameworks heavily depended on
1. Whom you hired or sought advice from
2. What year + season it was

* Frameworks came and went much faster than did your applications

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

38

Ihttps://en.wikipedia.org/wiki/Comparison_of web_frameworks |

Stability of Technology Stack — Java MVC

* Java frameworks came and went much faster than did our applications

Is totally s still
PL/SQL and SQL different from PL/SQL and SQL
used here [MVC used here] MVC used here used here
s
1985 1990 1995 2000 2005 2010 2015
Reign of "SmartDB" era Rise of "NoPlsql"” era
DB = processing engine DB = persistence layer

- . tapestry
u 0 eclipse)link BC4J / ADF-BC vaadin }> !

View Controller Google
\J \J 0 @ GRAILS ¥y HIBERNATE E—— @ Web Toolkit®

ORACLE

APACHEWICKET

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 39

https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=8aGhZQkoFbQ&t

Stability of Technology Stack — JavaScript MVC

[MVC used here]

s totally
different from
MVC used here

N

t t t

1 +—t i' —t
1990 1995 2000 2005

2010

s totally different

JavaScript
used here

2015

from JavaScript
used here

@ GraphQL

2020

1985

Reign of "SmartDB" era Rise of "NoPlsql" era Rise of JavaScript
DB = processing engine DB = persistence layer everywhere iy

RBENAVYE 0| — e

mREAOA B | O LI "Oic e IPEL %

RO V jp - | @) g Technology volatility Css
o BR® 4 s L@D currently worse in emerging
oA » == g 2| | BABACKBONE)S WSl & jQuervy new world
ORACI_EW Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 40

Issue 1 Stability of Technology Stack
* Highly dynamic playing field

— Frameworks outside database come and go fast
— If business logic gets implemented within these frameworks

— Danger of mandatory rewrites
* Frameworks needed upgrading often during ongoing project
* Frameworks going out-of-fashion

— Alternatively: stay on old framework with decreasing available knowledge in
marketplace

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

41

Issue 1: Stability of Technology Stack

* |f layers in your chosen technology stacks are volatile...

Then you ought to use them "thinly"

— |.e. do not do business logic in them
— Instead, push business logic further down into code-stack where stable layers exist

Why? Enables agility. Prevents expensive technology stack upgrades/migrations.

* But nobody has been doing that...
We have been creating maintenance nightmares in past 15 years

* Prediction:
PL/SQL and SQL will still be here 10 years from now when JavaScript's reign

ends

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

42

2 Speed of Development and Maintenance

* Issue is multi faceted
a) Complex layered technology stacks
b) Double work: domain model and database design
c) Wheels are reinvented
)

d) Is OO a good fit, given our context?

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

43

2a. Technology Stacks Are Complex

* The things you have to learn if you don’t want to “do SQL":

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

2a. Technology Stacks Are Complex

* From: https://www.toptal.com/java/how-hibernate-ruined-my-career

"I had to learn Hibernate architecture which included: its configuration, logging,
naming strategies, tuplizers, entity name resolvers, enhanced identifier generators,
identifier generator optimization, union-subclasses, XDoclet markup, bidirectional
associations with indexed collections, ternary associations, idbag, mixing implicit
polymorphism with other inheritance mappings, replicating object between two
different datastores, detached objects and automatic versioning, connection release

modes, stateless session interface, taxonomy of collection persistence, cache levels,
lazy or eager fetching and many, many more."

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 45

2a. Plumbing Code and Architecture Discussions

* Frameworks don't just work out of the box

: Ul-fw
Need to be configured and glued together Controlfw
* How exactly to do this results in debates at start of project Business-fw
N le: "th hitect" Model-fw
ewrole: € arcnitec Persistence-fw
— Results in having to develop "plumbing code": glue and JDBC

infrastructure code
— Further refining and maintaining this, is ongoing cost

* A lot of time gets spent on above two topics
Developers concentrate less on what is unique to application

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 46

2b. Double Work: Domain + Database Design

* Maybe not so much during initial build

— As data model is likely just generated from domain model
* Sub-optimal database designs (what about 3NF?)
* Horrible SQL, performance issues

* Work needs to be put in, to cross the "object-relational impedance
mismatch®
— Resulting in more discussions and lost time
— Extra work very much during ongoing maintenance when "something in the model
needs changing "

* SmartDB developers proportionally spend more time on what
end-users care for, and on what is unique to application

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

a7

2c. Wheels Are Reinvented

* Both by frameworks as well as by developers

—Transaction management, cache synchronization, read-consistency, security, ...

— Do-it-yourself: joining, set-operations, grouping, sorting, aggregation, ...

* All available out-of-the-box inside database, declaratively via SQL

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

48

2d. Is Object Orientation (OO) a Good Fit?

* Example use-case: funds transfer
Inputs: source-account, target-account, transfer-amount

— Perform validations on input values

— Apply various "business rules"

* Lookup customer-type and apply type specific policies Sequential
procedural code

with embeddec
* Validate enough funds available for transfer queries and DML

v

* Lookup account-type and apply type specific policies

— Perform/transact funds transfer

— Log transaction including policies applied v

* In essence nothing OO-ish about business logic

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 49

2d. Molding Business Logic into OO-Form

* Business logic = sequence of actions to be performed depending on
outcome of embedded data accesses (SQL!) and/or supplied inputs

* Natural fit = Some language that can do SQL really good (think: PL/SQL)

* Hiding these actions into many layers of "abstraction” does not add value

— Makes reading and understanding code more difficult (_/\
— Makes maintaining code more expensive 00 is not silly A
. o o It has its use-cases, but doing
— Makes bug-hunting/providing support more difficult data-intensive business logic
9 with it, is not one of them y

http://www.yegor256.com/2016/08/15/what-is-wrong-object-oriented-programming.html

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 50

http://www.yegor256.com/2016/08/15/what-is-wrong-object-oriented-programming.html

3 Database Security and Integrity

* NoPIsgl approach requires direct access to all tables

* All code to enforce data integrity and secure access
is built outside database Uifw

Control-fw
Business-fw
Model-fw
Persistence-fw

[JDBC

Directaccess to all tables

* There always is need to access data other than via "the app”
* These accesses can easily compromise data integrity and security policies

ORACLE HEAL'WORLD PERFORMANCE Copyrlght © 2019, Oracle and/or its affiliates. All rlghts reserved. I

51

4 Performance and Scalability

» "Database is always bottleneck”, so here's NoPlsql's promise:
— Get data from DB once into mid-tier cache
— Then re-use many times in horizontally scalable mid-tier servers
— Write data back to db once

* This is often important argument used to reject SmartDB approach

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

52

4 Performance and Scalability

| know there are many realities out there.

. But this is specific scenario that I'm
* However in real-world: targeting, as it's the one | see most often

* Multiple re-uses of cached data hardly ever takes place

— It is read + manipulated once, then written back, and not used again while in cache
— Cached data volumes become so big that caches need to age-out data pre-maturely

* Instantiating objects for rows takes a lot of memory (and CPU)
Data is always cached in multiple layers (jdbc, orm, ...)

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 53

4 Scalability with Layered Architectures

https://
= X @

* Looks fantastic on white-board, right?

* Different layers, separation of concerns

Ol o — Can hire expert for each layer
Control-fw — Working/tweaking in own layer
Business-fw
. Model-fw
Persistence-fw * But what happens for problems that
JDBC require holistic approach like

performance?

— Q: Where is leverage with 6+ layers?

— A: There is none

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

54

4 Scalability with Layered Architectures

* Q: So how do you scale?

* A: You use application parallelism (threading)

* Q: How much code do you need to write or run to make this work?
* A:Alot

Ties back into 'speed of development' issue]
. ORACLE
ORACLE - . .
REAL-WORLD PERFORMANCE opyright © 2019, Oracle and/or its affiliates. All rights reserved. |

55

Roadmap

ORACLE

Next Section’s goal:

Create awareness of rather huge inefficiencies introduced by using
the database as just a persistence layer

Business Logic

What Is SmartDB?

Some History and Observations
Issues With Other Approaches

Debunking Performance and Scalability Argument

Closing Remarks

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 56

Summary Here

* Full story at Oracle Learning Library channel on YouTube

https://www.youtube.com/watch?v=8jiJDflpw4Y

Search: "toon koppelaars"

The NoPlsql and Thick Database Approaches

Which One Do You Think Requires a Bigger Database Server?

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

57

https://www.youtube.com/watch?v=8jiJDflpw4Y

What We Did

* Built Java batch program and measured performance
— Using straight Java on top of JDBC (no frameworks)

— With pattern we always see:
* Chatty
* All single-row, single-table SQL queries and DML
* Get data into mid-tier, use-once, write data back to database

* Rebuilt batch program in PL/SQL also

— Using same chatty row-by-row SQL behavior
—Same SQL statements
— Same business logic

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

58

Load Profile

Program does a bit of everything:

* Single row inserts into five tables

* Indexed single row lookups from three tables

* Single row deletes from two tables

* Index maintenance on all involved tables

* Little bit of business logic
— Row-by-row looping, if-then-else code

ORACLE ORACLE
REAL-WORLD PERFORMANCE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Executes 5+ million

single-row SQL
statements

\

59

Plain Java-on-JDBC vs. PLSQL (Both Row-by-Row)

Invoke method on
main class

‘ Invoke packaged
procedure

Business logic
JVM| inJava with

embedded SQL _
Both single threaded

t JVM on DB-server

Business logic in
PL/SQL with
embedded SQL

SQL engine

SQL engine

ORACLE HEAL'WORLD pERFOHMANCE Copyrlght © 2019, Oracle and/or its affiliates. All rights reserved. I

60

Plain Java-on-JDBC vs. PLSQL (Both Row-by-Row)

Elapsed-time: 11 minutes Elapsed-time: 3 minutes 30 seconds

JVM

Business logic

in Java with
embedded SQL Business logic in
PL/SQL with
t embedded SQL
204 DB-CPU seconds

SQL engine 437 DB-CPU seconds SQL engine

ORACLE HEAL'WORLD pERFOHMANCE Copyrlght © 2019, Oracle and/or its affiliates. All r|ght5 reserved. I 61

Execute Same SQL, Same Number of Times

[Java/IDBC

m Rows per Exec | Elapsed Time (s) | %CPU sSQL Id
1474159 1,474,159 1,00

2713 335 0 axm7véwed6d9r JDBC Thin Client
737,096 737,093 1.00 53453322 0 9gfibfésaufdq JDBC Thin Client
737,093 737,058 1.00 18.27 36.2 0 byz3sq82mhk94 JDBC Thin Client
737,063 737,059 1.00 5336 349 0 57tfm0Oys206gx JDBC Thin Client
737,058 737,058 1.00 5142 376 0 1ymOxkhv7j77w JDBC Thin Client
737,058 737,058 1.00 4894 366 0 2bsgm7y3at108 JDBC Thin Client
737,058 \ T3Ti058‘ 1.00 56.07 386 0 9cmuam5rgxtkh JDBC Thin Client
PLSQL
(Executions | Rows Processed | Rows per Exec | Elapsed Time (s) | %CPU /0] _SaLld _
1,474 159 1,474 159 1.00 177641011 0O 8d045khaféy24 SQL*Plus
737,096 737,093 1.00 3639976 0 Tn0fbcbSgrpk9t SQL*Plus
737,093 737,058 1.00 11431015 0 d3traqcbvg8xv SQL*Plus
737,083 737,059 1.00 3556987 0 4zt60chxdmy3n SQL*Plus
737,058 737,058 1.00 3124993 0 071upcsdykqq? SQL*Plus
737,058 737,058 1.00 3270982 0 d4xutmzsrnauf SQL*Plus
737,058 \ 37,058 1.00 3880988 0 8pOwp2wlins7p SQL*Plus
ORACLE

ORACLE

REAL-WORLD PERFORMANCE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

SQL Module

SQL Module
select count(™) from matched m._.

insert into prematch_buy { COD. .
select x2.*, x2.rowid from pre...
insert into prematch_sell (CO__
delete from prematch_buy where.
delete from prematch_sell wher._.
\Unsert into matched (CODE . S.._/

SQL Text
SELECT COUNT(™) FROM MATCHED M._.
INSERT INTO PREMATCH_BUY { COD._.
SELECT X2.*, X2. ROWID FROM PRE...
INSERT INTO PREMATCH_SELL (CO...
DELETE FROM PREMATCH_SELL WHER...

DELETE FROM PREMATCH_BUY WHERE ..
\UNSERT INTO MATCHED (CODE ,S.. J

62

AWR's Do Not Show Abnormalities: Both CPU Bound

Top 10 Foreground Events by Total Wait Time

[Java/IDBC
~Event | Waits | Total Wait Time (sec) | Wait Avgims) | % DB time | Wait Class

DB CPU 437.2
log file sync 17,358 0.89 3.5 Commit
SQL*Net message to client 5,916,453 0.00 1.1 Network
gc current multi block request 2,004 0.68 .3 Cluster
external table read 304 1.51 .1 User l/O
[PL/SQL Top 10 Foreground Events by Total Wait Time
[Event | Waits | Total Wait Time (sec) | Wait Avg(ms) | % DB tme | Wait Class _
DB CPU 203.9
gc current multi block request 2,100 0.80 .8 Cluster
undo segment extension 11 38.60 .2 Configuration
external table read 304 1.13 .2 User /O
cell statistics gather 416 0.33 .1 User /O
ORACLE

ORACLE

HEAL'WORLD PERFORMANCE Copyrlght © 2019, Oracle and/or its affiliates. All rights reserved. I

We Moved From NoPIsqgl to SmartDB

Gets work
* Elapsed drops by 3X = #SmartDB is faster wdhci)lr;eafca::rar:e
ime using |
* DB-CPU drops by 2X = #SmartDB is more scalable 0 ess/

* Seems like “SmartDB approach will saturate database" is false?

ORACI_E HEAL'WORLD PERFORMANCE Copyrlght © 2019, Oracle and/or its affiliates. All rights reserved. I

Wow...

* Single-row SQL from NoPlsqgl consumes 2X DB-CPU?
— 437 CPU seconds vs. 204 CPU seconds

* Why is that?
1. More code path
2. Worse "IpC"

ORACLE ORACLE
REAL-WORLD PERFORMANCE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

65

Why Is SmartDB So Much More Efficient in Executing SQL?

* "The Living Room" analogy
— Living room is where SQL engine resides
— PL/SQL is already in living room

* All other technologies have to enter through front-door
— Traverse hallway
— And only then enter living room

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

The Living Room

* SQL engine

ORACLE

ORACLE

REAL-WORLD PERFORMANCE

Oracle

Copyright © 2019, On

Linux

The Living Room

* SQL engine

— Accessible via OPI layer
— Oracle Program Interface

* PL/SQL directly calls OPI

Oracle

ORACLE ORACLE I Linux
REAL-WORLD PERFORMANCE opyrig : - .

The Living Room

* Qutside SQL route:

— OS network/ipc layers
* Front door, doormat

— Net/TNS/TT layers

* hallway

— OPI

=» More code path:
which you start noticing
for single-row/single-table SQL

ORACLE ORACLE
REAL-WORLD PERFORMANCE

SQL €

Device-driver/Ethernet/IP/TCP-UDP/ Soch

System Iibr\:ry

Prot. adap

r

TNS

SQL*Net

Two-tas

Oracle

Linux

Investigated This Via FlameGraphs

i

ORACLE

ORACLE

REAL-WORLD PERFORMANCE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

" FlameGraph visualizes

code-stacks where
process has spent its

J

vtime

Visualizing This Via FlameGraphs

Width of top-surface represents where time is spent

NN

pl P9
main

s

Width represents # of samples = cpu-time spent

* More info:
— https://github.com/brendangregg/FlameGraph

* See also Luca Canali's blog
— http://externaltable.blogspot.nl/2014/05/flame-graphs-for-oracle.html

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

https://github.com/brendangregg/FlameGraph

Oracle Server FlameGraph SmartDB

|
—— | |

PLSQL code
lines execution

And this is

kauxsin

SRS =sltcLoadIndextist

___=..0b B:
=004
mt E
=0
lllll-.-l

| gerlteSingleRowload

204 DB-CPU seconds

=== il

o
|| W.n
g5y
wn D
O o C v
+—~ O Lm
| | = =
-=-uil} £3® 3G
~=sean) a3 a5
v £
T =2
(V5]
£ 2
)
Lo
o .C
Wgo
c
3]

libc_start_main

| opiodr

|
‘ 'ssthrdmain
.

| @ main

Oracle Server Flamegraph Java/JDBC

oy
lan g
—=5

||||l
|||n-k
Ill-

Query executes
and fetches

|t=:|:|_sen dmsag

Shipping data in and
out of living room
Almost 30% of time

p Of the 70%

That 30% Is in Fact a 43% Increase on To

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

—==a=Ta= £
2 _ .w_
© I
EE .
=R
X T ¢
MmO .
<t © 0T -—=cm BE:QS
»n o O TEeeE
S ©
o O
c uwn
T

-mmnm-.....__ _d_ﬁ______mm__
-

ORACLE
REAL-WORLD PERFORMANCE

§
£
.
%
g

m
<
%
0

Deeper
®

igging

D

executing 700K deletes.
Why is it taking longer?

That's exactly the same code

_ .
n--
ErepEnseesssnec8 ll\”_“ i ___ md m
\\\Hmﬂm
IIMAJ-
| S
memn .- m.x.m m W n
i @)
el a
] =S __
— — i INN.- w P
- l- C
i 1
=i __h_d o)
()]
SS=. l I- S :
= k- M |llﬂ-——— M ,m
| =)
1 U
u
O 3 ___._ il
: @ 3 i . bl
O 3
1 =<2
3 ~— (%] [a
: © O 0O
i > ¢
: S cN
- n - w n
g e o e
| V4
a Q h G a
S o+
L Ex
=
AT

Digging Deeper: CPU Efficiency

Why is same code using more CPU cycles for NoPlsqgl?

Let's use "perf stat" to get some insight here
Reports CPU usage of a p|d

= = =S =H

i
i
i
i
1

Bil

Bil

perf stat -e cpu-clock,task-clock,cycles,instructions,bus-cycles,faults,cpu-migrations,cache-references,cache-misses,context-switches,branches,branch-misses -p <pid>

. ORACLE
ORACI-E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

NoPlsgl Consistently Results in Worse IPC (insns per cycle)

"Perf stat" output summary 50% more instructions
for duration of each run

Requiring 90% more CPU]
PLSQL NoPlsqgl
Instructions 455G 6/0G

Total cycles | 660G 1220G /(Considerable worse IPC
Insns/cycle | 0,69 0,55 . Basically means: you run on a slower CPU

Branches 850G 129G
BranchMisses | 0.9G 2.3G € Caused by more branch misses]
%BMIS 1.03% 1.76%
CacheRefs 260G 54G
CacheMisses | 0.13G 0.295G € And more cache misses]
%CMIS 0.5% 0.55%

ORACLE HEAL"WORLD pERFOHMANCE Copyrlght © 2019, Oracle and/or its affiliates. All rights reserved. |

Any NoPlsql Approach Will Suffer From This

* OS has to wake up for every incoming SQL call

— To service the network interrupt, find process associated with socket

* Schedule that dedicated server process to start running

* Once it runs, hopefully on same core as previous call, code+data caches
likely full with other PID's stuff

* These tests were on idle server: on busy server expect this phenomenon
to become worse

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

What About Executing the Business Logic?

* The "app-server side": quite interesting too...
—Java/JDBC : 217 CPU seconds (11 minutes busy 33% in JVM)
— PL/SQL : 20 CPU seconds PLSQL execution time (Time Model in AWR)

* Ten times more expensive...

Why 10X more CPU? |
Invoke method on
main class
‘ Invoke packaged

procedure

Business logic
JVM | inJava with
>
embedded SQL @ 10X
3
o 7 | o [L
SQL engine

ORACI_E HEAL'WORLD pERFOHMANCE Copyrlght © 2019, Oracle and/or its affiliates. All rights reserved. I

Business logic in
PL/SQL with
embedded SQL

Why 10X more cpu?
PLSQL doesn't have any of
these three overheads

JVM FlameGraph Java/JDBC

217 CPU seconds

Our business logic is
simply not visible

|
| |
10 | | | |
] | | |
o e .
1) Shipping —N | || || []
. I—. 1l | | [1]
data in and out .. | | | | @ |
ip_.. | [| N | N |
ip_. | | I | Bl | 8|
ip_r.. m Bonm | or.. | | =1
mmm |3)Restis JVM housekeeping" I B EERE 1)
 _net... 2 in | o EEEEE Wora. |
| proce.. lper | | 8 | (oraclefjeb.. | oracl..
metr. BEE | mn | I| || loraclefjdbe.. oracle.. |
| _do_..| = [| n] | | loraclefjdbc/.. |loracle.. |
[] fcals. | G) |] [| ..oraclef.jdbqf.. | oracle.. |
| Slocal_. = | @Al W) |f Eorace/jdbel.. [ijoracien |
LI dev_que.. Bosen. | § Do W B | N Suerecyceen EEuS|
[iinis=y B fc. | If) o B) ON)) SO -ur<h.. ||
([I | |ip_output W [fuEE| §) 0 oracle/.. | BEMM) oracle/ucp/jdbc/proxy/PreparedStat..
|8 |ip_local.. [do_.. |[pEFf=29802900 |
| ip_queue_.. | || perf_event conte.. || sys..

| finish_task_switch |
| ~ [schedule |
| [l schedule
n

J|Paral.. SpinPause
| StealTask::do_it

JavacCalls: :call_virtual
JavaCalls:y

[futex_wait_queue..
B futex_wait
[||sock_sendmsg || do_futex

| sys_sendto | sys_futex

Our "program"
2) Most of it is JDBC, ie. getting
SQL ready to be shipped

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Comparing NoPlsql and ThickDB

* If you execute many single-row, single-table SQL
You start noticing overhead if SQL is not submitted from PL/SQL

— Both at database server and at application server

* Layered (MVC) software architectures come with considerable CPU cost
— Executing code through many object-oriented micro layers is not free

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Embracing Set-Based SQL

* Once you're in PL/SQL opportunities for set-based SQL open up naturally
— NoPlsqgl SW architectures simply prevent this as SQL is invisible

* Often parts of business logic can be rewritten into set-based SQL
— This pushes business logic further down, from PL/SQL into SQL

* RWP's consistent experience has been:
— From row-by-row to set-based =2 speedups of up to 2 orders of magnitude

— 100X faster is not uncommon

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Our Example Batch Program

* Able to rewrite using set-based multi-table insert statements (MTI)

* Row-by-row Java/IDBC used :437 DB-CPU seconds
* Row-by-row PLSQL used : 204 DB-CPU seconds
* Set-based uses : 7 DB-CPU seconds

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Flamegraph set-based

(NHE [F -L--..-_

————_=uniij u
AEEEEERE GGG RGEE BN u— H
=Z_S=gh m

Set-based approaches

code size

typically result in less hot

hit ratios

Resulting in better IPC

Resulting in better cache

- .:..__L_

U
0
B
i d g
H w 3
E m m .n h
FEE w

it ey

Less hot-code as MTI
fits our problem
Less cache-misses

|

+
]
b
a

-h.--r

. NNGENNEE, L RN,

Inside MTI the
whole time

|

ORACLE

REAL-WORLD PERFORMANCE

el il

(6])Y Ferrrare oo T e T T e o O Ture

In proporti

xsin
gesltcLoadIndexList

| | q=ritcSingleRowload

=T
-
ks Bl opipls

Set-based 7

|

|

I

ttcpip 1]

e ——————————
opiodr

| Row-by-row PLSQL 204

W ssthrdmain

__libc_start_main

-y Row-by-row NoPlsql 437

I Ecp__push
tcp_sendmsg

nsbasic__bsd
nsbsend

e = mw omrom mmme— mm mrw mmmar mmom o=

Our Results Visualized

Java/IDBC PLSQL row-by-row PLSQL set-based
DB-CPU 437 204 7
APP-CPU 217 0 0
Elapsed 660 204 7

Not a little faster...
Just think about this...

ORACLE

ORACLE’
REAL-WORLD PERFORMANCE

700

600

500

400

300

200

100

I : I)
Java/JDBC PLSQL row- PLSQL set-
by-row hased

W APP-CPU
m DB-CPU

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

86

Set-Based Has Another Major Advantage

* If elapsed time of 7 seconds is still not fast enough...

* Just flip switch and have CBO generate a parallel execution plan

* In NoPlIsgl there's "Do it yourself parallelism" via threading
— Requiring development time orders of magnitude more than flipping switch

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

87

Two additional points to be made (1/2)

* If network were involved, elapsed time for NoPlsqgl would be seriously
impacted

Invoke method on
main class

‘ Invoke packaged
procedure

Business logic
JVM | inlJava with
embedded SQL

Five million Bulfi?galigiiﬁin
roundtrips... sl Sall

Sarergnell— 437

* You'll spend a lot of time on the wire

ORACLG HEAL'WORLD pERFOH MANCE Copyrlght © 2019, Oracle and/or its affiliates. All rights reserved. I

(10K calls/second)

ERS

SQL engine

Two additional points to be made (2/2)

* NoPlsgl row-by-row solutions suffer from additional sys-time in OS
— Could easily be 5-10% additional cpu load on DB-server
— Depends on chatty-ness of application

SQL £ evice-driver/Ethernet/IP/TCP-UDP/SocRuats

System librgry
/ Prot. adapthr
[Time spent in these does not show up as DB-TIME NS
It shows up as additional sys-time in the OS e
Two-tas
OPI

ORACLE HEAL'WORLD pERFOHMANCE Copyrlght © 2019, Oracle and/or its affiliates. All rights reserved. I

Check your SYS/USER CPU Ratio |Operating System Statisti
per Second « *"TIME statistic values are diffed. All others disj

» ordered by statistic type (CPU Use, Virtual Me

T statistic] vale |

SQL*Net roundtrips to/from client 96,798,185

AVG _BUSY_ TIME 176,324

AVG_IDLE_TIME 181,526

AVG SYS TIME 60,178

‘ AVG USER TIME 115,961

BUSY_TIME 42.359,746

- - - IDLE TIME 43,610,329
Operating System Statisticq sys e TRIEIET
USER_TIME 27,875,246

16-Aug 14:00:27 104.09
16-Aug 15:00:07 167.55 49.27| 3242 16.85 950.7/3 0.00

ORACLE

%idle | %iowait

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 90

Debunking “Keep Business Logic Outside Database”

-
“We’ll adopt layered sw-
architecture to increase
developer productivity”

) :
All business

-
- logic will be in
middle tier
- J

\

You actually need » Is capped -
bigger DB-server Can only be so big

All use-cases in
your app will -

run like a dog

ORACLE

ORACLE

REAL-WORLD PERFORMANCE

a This results in DB- A

Database becomes
‘ “bit-bucket”

" Your scalability h
stops sooner
N rather than later)

4 R
server spending a lot U Y e,
of CPU on stuff you - 1: Row-by-row 5QL
don’ 2: Chatty app
. don’t care about Y Y,

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 91

Roadmap

ORACLE

Business Logic

What Is SmartDB?

Some History and Observations

Issues With Other Approaches

Debunking Performance and Scalability Argument

Closing Remarks

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

92

What does all this mean?

* Trying to scale your NoPlsql application via many cheap middle tier servers
running BL will saturate your database server way earlier than when you
had employed SmartDB approach for your application

* Or,

* You can service more application users on the same database server if you
use the SmartDB approach

=» Using database as processing engine saves you money

=» Using database as bit-bucket costs you money

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

The Implication Of All This, Visualized

App App App App App
server server server server server

Database is always
first bottleneck

500 TX/Sec
. A
With SmartDB you
can process more
500 TX/Sec with same hardware

N
With SmartDB you

can process same
with less DB licenses
Set-based SQL...] Y,

ORACI_E HEAL'WORLD PERFORMANCE Copyrlght © 2019, Oracle and/or its affiliates. All rights reserved. I

OunrovOo==2

WO 4> Wn

94

2: SQL Isn’t Accidental: Au-Contraire, It’'s Fundamental

* There are nearly always opportunities for your business logic to be pushed
into set-based SQL

* Why is this the case?

* There’s a fundamental reason for this...

| Welcome to0
The Real World:
| MATHIN ACTION

L

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

95

2: SQL Isn’t Accidental: Au-Contraire, It’'s Fundamental

world, using natural

language to reason
with each other

\about the real wogd

4

The Real World

natural language, particularly the
parts of it that deal with reasoning

So we reason in the model using TP T Ly]
language that was based on how iyl

we reason in the real-world { We reason in this }

T D\
Us, living in the real [Logic and set theory are based on 1

model using rich,
set-based, SQL

2o

Application: model of a
> part of the real world

about which we want to
reason using computers

Ergo, SQL fundamentally fits what
we want to achieve

ORACI-G REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 96

My Application Is Too Complex

* “| cannot do my application logic in SQL and PL/SQL”

— Both SQL and PL/SQL have become incredibly rich

— Given our context (transactional business applications) and SQL’s fundamental fit,
it would be strange if your logic cannot be dealt with

* Don’t underestimate width and depth of SQL and PL/SQL

* And all DB features surrounding these two languages

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

97

Often This Is The Issue

* A mindshift is required:

* You need to start thinking in “processing data”

* Instead of “interacting with objects”

* A relational database design should be your frame of reference

* And not an (object oriented) domain model

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

98

Finishing Up
* NoPIsgl has had its reign

* Arguments for its rise,
— Have either not been delivered (code reuse, speed of development)
— Or, have been debunked (performance and scalability)

* Current JavaScript hype brings no new arguments to table

* SmartDB has survived in many (happy) pockets around the world
— PL/SQL and SQL have moved forward a lot since 2001
— It's high time for resurgence of using database as processing engine
—In Part 2 we will discuss how to adopt SmartDB approach

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

€8

Questions

ORACLE

REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 100

ORACLE

Integrated Cloud

Applications & Platform Services

ORACLE

ORACLE

HEAL'WORLD pERFOHMANCE Copyrlght © 2019, Oracle and/or its affiliates. All rlghts reserved. I 102

ORACLE’

/posts Jcomments /authors

posts comments authors

REST API GraphQL API

An artists’ interpretation of fetching resources with multiple REST roundtrips vs. one GraphQL request

ORACI_E REAL-WORLD PERFORMANCE Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 103

“Chatty” Applications

) 4)

Many roundtrips
between
processes/machines

”Decr
percer

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 104

All SQL Sits Inside PL/SQL

“Decr

percer Stored

&

sits inside PL/SQL

{ Preferably all SQL

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 105

