
Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

SmartDB: A Database Centric Approach to
Application Development

Part 1: What?

Toon Koppelaars
Real-World Performance
Oracle Server Technologies

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

About Me

• Part of Oracle eco-system since 1987
– Have done and seen quite a lot of application development

– Database design, SQL and PL/SQL

• Big fan of “Using Database As a Processing Engine”
– Not just as a persistence layer

• Member of Oracle’s Real-World Performance Group

3

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Terminology Over The Years
• Thick DB

• Translated from Dutch, first used in “A First JDeveloper Project”, Oracle World 2002

• Fat DB
• Because “thick” has other meanings

• “Phat” DB
• More hip

• The Helsinki Declaration
• Java-conference @Helsinki, resulted in TheHelsinkiDeclaration.blogspot.com

• Using database as “Processing Engine”
• That’s what we call it inside Real-World Performance group

• SmartDB
• Joint PM proposal new name

4

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Agenda This Afternoon

• Part 1: SmartDB, What Is It and Why Would You Want to Consider It?

– Break

• Part 1: SmartDB, What Is It and Why Would You Want to Consider It?

– Break

• Part 2: SmartDB, How, What Are Critical Success Factors?

5

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Roadmap Part 1

Business Logic

What Is SmartDB?

Some History and Observations

Issues With Other Approaches

Debunking Performance and Scalability Argument

Closing Remarks

1

2

3

4

6

5

6

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Roadmap Part 1

Business Logic

What Is SmartDB?

Some History and Observations

Issues With Other Approaches

Debunking Performance and Scalability Argument

Closing Remarks

1

2

3

4

7

5

6

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Context of This Presentation

• Data intensive transactional business applications

– A Data store as foundation

– Relational tables in Oracle database

–Much business functionality on top
• Retrieval of data (select)

• Manipulation of data (insert/update/delete)

– User interfaces, batches, reports, services to other application systems

– Potentially many users

Retrieval Manipulation

Data store

8

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Transactional Business Applications

• Conceptually 3 tiers

– Exposed functionality via services
• GUI's for human interaction

• REST, or otherwise, for software interaction

– Internals
• Business logic

• Data store, relational database

User
Interfaces

Software
Interfaces

Business
Logic

Table
Data Store

9

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Transactional Business Applications

• A big component of these applications is “Business Logic”

• What is “Business Logic”?

10

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Wiki

Code with embedded
data access

statements in it

Business
Logic

SQL

SQLSQL

SQL
SQL

SQL

11

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Example Business Logic: Code With Embedded SQL

12

Single-row data access

Business logic

Business
logic

Row fetching (data access)

Business logic

Row-by-row updating (data access)

Conditional if-then-else and
looping logic

Primitive data access
(single table, single row)

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Example Business Logic: All in SQL

13

Point to be made:

• Business logic can appear:

– As code-lines in some programming language that issues simple (poor) SQL

– Inside (set-based) SQL itself

Set-based data processing
Aka “rich”SQL

References multiple tables
Affects multiple rows

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

My Take on "Business Logic"

• Code that composes(*) queries and executes them

• Code that composes(*) transactions and executes them

– *: The way the business requires this to be done

• Queries and transactions (sequence of DML statements) can be

– Primitive: row-by-row, or

– Rich: set-based

14

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Roadmap

Business Logic

What Is SmartDB?

Some History and Observations

Issues With Other Approaches

Debunking Performance and Scalability Argument

Closing Remarks

1

2

3

4

15

5

6

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

We See Two Mutually Distinct Approaches

16

DBMS = Persistence Layer

"NoPlsql" Approach

DBMS = Processing Engine

"SmartDB" Approach

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

NoPlsql Approach

• Database = persistence layer

• No business logic in database

– PL/SQL is not used

– Set-based SQL is not used

• Some other language outside used for business logic

– Java, .Net, JavaScript, PHP, …

–Only primitive SQL-statements are submitted
To persist and retrieve rows

DBMS

SQL

SQLSQL SQLSQL

17

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

SmartDB Approach

• Database = processing engine

• Business logic is implemented via PL/SQL or
complex SQL

– All SQL, often set-based, executed from PL/SQL

– Using database in ways it was designed to be used,
ergo “SmartDB"

• Database exposes API's for user-interfaces

More on this in part 2

DBMS
SQL SQL

SQL
SQL

SQL

18

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Roadmap

Business Logic

What Is SmartDB?

Some History and Observations

Issues With Other Approaches

Debunking Performance and Scalability Argument

Closing Remarks

1

2

3

4

19

5

6

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

My Ride Through Wonderful World of IT

1980 1990 2000 2010 2020

eighties nineties zeros now

Terminal/host

Block-mode/stateless Stateful client programs

Character-mode GUI's client/server

Stateless browser Many devices/mobile/always connected

20

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Oracle v4, v5, v6 Database Documentation

21

v6

v4

v5

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Oracle7, 8i: Database Documentation

22

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

http://docs.oracle.com/en/database/

And of course lots of blogs out there on the internet

23

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

History Observation: End of "SmartDB" Era

1990 1995 2000 2005 20152010

Oracle7

Reign of "SmartDB" era
DB = processing engine

Rise of "NoPlsql" era
DB = persistence layer

Features available in DB

1985

DB-features used by
application development

Advent of J2EE
and MVC frameworks

Collapse of JEE

Advent of JavaScript
frameworks

Fe
at

u
re

 r
ic

h
n

es
s

24

2020

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Why Did Java Become so Popular?

• Many programming languages available on Windows in '90-s
– From Microsoft, and other vendors

– Industry was experiencing ugly 16-bit to 32-bit conversion

• Java seemed simple, had WORA, and developers were cheap
–Object orientated programming (OOP) promised code reusability

– IDE's with method-auto-completion

– Programmer friendly naming conventions and no header files

– C-like syntax, lowering bar for C-programmers

–Offered garbage collection, relieving task of memory management

– Introduced mainstream exceptions

See also: https://www.youtube.com/watch?v=QM1iUe6IofM "OOP is bad"

Write Once
Run Anywhere

25

https://www.youtube.com/watch?v=QM1iUe6IofM

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Why Did Java Become so Popular?

Then Sun released J2EE design pattern which
included thin browser, fat mid-tier, DB-as-persistence-layer architecture

Promised scalability by offloading code from DBMS

Everybody (vendors, community, and academia) jumped on that bandwagon

26

The rest is history…

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Why Did Java Become so Popular?

• Important note to make:

"Java is a good fit for developing data-intensive business logic" is not in
that list…

• All of SmartDB goodness was simply discarded in new millennium

• Only real counter-argument was: "Database is always bottleneck"

27

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Where Were We at End of 1990's?

• Applications capitalized on database being a processing engine

Client:
UI-only

Tables typically never accessed directly

Stored PL/SQL modules and views
Straight procedural business logic

with embedded SQL written by SQL-savvy developersDBMS

Proper relational database design
decorated with declarative constraints

28

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

What Has Happened Since?

• Database to only fulfill persistence layer role (bit bucket)

Direct access to all tables

JDBC
Persistence-fw

Model-fw
Business-fw
Control-fw
UI/View-fw

Browser:
UI-only

Bag of tables (to hold object instances)
often without constraints

29

Model-View-Controller (MVC)
framework era during

1st decade of new millennium

All business logic in
Java based on

hierarchical/network
domain model

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Important Points to Make

• In layered MVC approach SQL is invisible

• Almost always SQL is hidden from developers

–Object oriented domain models are used

– Developers invoke methods on objects

–Objects map to tables via ORM tool

• ORM's produce single-row, single-table SQL

– Consequence of this type of architecture

–Which seems to have been accepted by everyone

Direct access to all tables

JDBC
Persistence-fw

Model-fw
Business-fw
Control-fw
UI/view-fw

30

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Important Points to Make

• Layered sw-architectures results in "chatty" applications

Many small calls between JDBC and database

• In early nineties we referred to this as "roundtrips"

– Roundtrips were bad (for performance) then, and still are today

–Oracle7, with stored PL/SQL, helped us mitigate this

– By moving business logic into database

31

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

New Paradigm Shift Happening: Java  JavaScript

• Server-side Java MVC-frameworks approach has been ubiquitous

• New architecture is arising:
– Browser-side JavaScript (V+C)
– Server-side JavaScript (M)
– REST to glue it together

– Database still as persistence layer

• In a sense, this is just client/server all over again
– Responsive UI running on client (browser)
– Smart data services running on server (JVM)

32

Direct access to all tables

JDBC
Persistence-fw

Model-fw
Business-fw
Control-fw
UI/view-fwREST

JVM

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Hot Right Now: GraphQL

• Really?

• SQL in disguise

• Instead of n Rest calls from browser to various end-points

• GraphQL does one call to GraphQL “server”

• Server has “knowledge” about domain model

• Server dissects call into n Rest calls to end-points

• ?

33

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Status Quo

• Layered Java MVC frameworks approach has been ubiquitous

– Feature-rich DBMS acts as a persistence layer

– All business logic implemented outside DBMS
Submitting simple SQL only

• New JavaScript frameworks (MVVM), which come and go even more
quickly, seem to maintain persistence layer role for DBMS

34

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Roadmap

Business Logic

What Is SmartDB?

Some History and Observations

Issues With Other Approaches

Debunking Performance and Scalability Argument

Closing Remarks

1

2

3

4

35

5

6

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Issues with NoPlsql

1. Stability of technology stack

2. Development and maintenance cost

3. Risk of compromised database security and integrity

4. Performance and scalability

36

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Out of Control…

37

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

1 Stability of Technology Stack - MVC

• Choice of Java MVC frameworks heavily depended on

1. Whom you hired or sought advice from

2. What year + season it was

• Frameworks came and went much faster than did your applications

38

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Stability of Technology Stack – Java MVC

• Java frameworks came and went much faster than did our applications

BC4J / ADF-BC

1
2

39

MVC used here

Is totally
different from

MVC used here
PL/SQL and SQL

used here

Is still
PL/SQL and SQL

used here

https://en.wikipedia.org/wiki/Comparison_of_web_frameworks

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Stability of Technology Stack – JavaScript MVC

40

MVC used here

Is totally
different from

MVC used here

Rise of JavaScript
everywhere

Technology volatility
currently worse in emerging

new world

JavaScript
used here

Is totally different
from JavaScript

used here

2020

https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=8aGhZQkoFbQ&t

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Issue 1 Stability of Technology Stack

• Highly dynamic playing field

– Frameworks outside database come and go fast

– If business logic gets implemented within these frameworks

 Danger of mandatory rewrites
• Frameworks needed upgrading often during ongoing project

• Frameworks going out-of-fashion

– Alternatively: stay on old framework with decreasing available knowledge in
marketplace

41

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Issue 1: Stability of Technology Stack
• If layers in your chosen technology stacks are volatile…

Then you ought to use them "thinly"
– I.e. do not do business logic in them
– Instead, push business logic further down into code-stack where stable layers exist
Why? Enables agility. Prevents expensive technology stack upgrades/migrations.

• But nobody has been doing that…
We have been creating maintenance nightmares in past 15 years

• Prediction:
PL/SQL and SQL will still be here 10 years from now when JavaScript's reign
ends

42

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

2 Speed of Development and Maintenance

• Issue is multi faceted

a) Complex layered technology stacks

b) Double work: domain model and database design

c) Wheels are reinvented

d) Is OO a good fit, given our context?

43

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

2a. Technology Stacks Are Complex

• The things you have to learn if you don’t want to “do SQL”:

44

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

2a. Technology Stacks Are Complex

• From: https://www.toptal.com/java/how-hibernate-ruined-my-career

"I had to learn Hibernate architecture which included: its configuration, logging,
naming strategies, tuplizers, entity name resolvers, enhanced identifier generators,
identifier generator optimization, union-subclasses, XDoclet markup, bidirectional
associations with indexed collections, ternary associations, idbag, mixing implicit
polymorphism with other inheritance mappings, replicating object between two
different datastores, detached objects and automatic versioning, connection release
modes, stateless session interface, taxonomy of collection persistence, cache levels,
lazy or eager fetching and many, many more."

45

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

2a. Plumbing Code and Architecture Discussions

• Frameworks don't just work out of the box
Need to be configured and glued together

• How exactly to do this results in debates at start of project
– New role: "the architect"

– Results in having to develop "plumbing code": glue and
infrastructure code

– Further refining and maintaining this, is ongoing cost

• A lot of time gets spent on above two topics
Developers concentrate less on what is unique to application

JDBC
Persistence-fw

Model-fw
Business-fw
Control-fw

UI-fw

46

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

2b. Double Work: Domain + Database Design

• Maybe not so much during initial build
– As data model is likely just generated from domain model
• Sub-optimal database designs (what about 3NF?)

• Horrible SQL, performance issues

• Work needs to be put in, to cross the "object-relational impedance
mismatch“
– Resulting in more discussions and lost time

– Extra work very much during ongoing maintenance when "something in the model
needs changing "

• SmartDB developers proportionally spend more time on what
end-users care for, and on what is unique to application

47

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

2c. Wheels Are Reinvented

• Both by frameworks as well as by developers

– Transaction management, cache synchronization, read-consistency, security, …

–Do-it-yourself: joining, set-operations, grouping, sorting, aggregation, …

• All available out-of-the-box inside database, declaratively via SQL

48

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

2d. Is Object Orientation (OO) a Good Fit?

• Example use-case: funds transfer
Inputs: source-account, target-account, transfer-amount

– Perform validations on input values

– Apply various "business rules"
• Lookup customer-type and apply type specific policies

• Lookup account-type and apply type specific policies

• Validate enough funds available for transfer

– Perform/transact funds transfer

– Log transaction including policies applied

• In essence nothing OO-ish about business logic

Sequential
procedural code
with embedded

queries and DML

49

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

2d. Molding Business Logic into OO-Form

• Business logic = sequence of actions to be performed depending on
outcome of embedded data accesses (SQL!) and/or supplied inputs

• Natural fit = Some language that can do SQL really good (think: PL/SQL)

• Hiding these actions into many layers of "abstraction" does not add value

–Makes reading and understanding code more difficult

–Makes maintaining code more expensive

–Makes bug-hunting/providing support more difficult

OO is not silly
It has its use-cases, but doing
data-intensive business logic

with it, is not one of them

http://www.yegor256.com/2016/08/15/what-is-wrong-object-oriented-programming.html

50

http://www.yegor256.com/2016/08/15/what-is-wrong-object-oriented-programming.html

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

3 Database Security and Integrity

• NoPlsql approach requires direct access to all tables

• All code to enforce data integrity and secure access
is built outside database

• There always is need to access data other than via "the app"

• These accesses can easily compromise data integrity and security policies

51

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

4 Performance and Scalability

• "Database is always bottleneck", so here's NoPlsql's promise:

– Get data from DB once into mid-tier cache

– Then re-use many times in horizontally scalable mid-tier servers

–Write data back to db once

• This is often important argument used to reject SmartDB approach

52

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

4 Performance and Scalability

• However in real-world:

• Multiple re-uses of cached data hardly ever takes place

– It is read + manipulated once, then written back, and not used again while in cache

– Cached data volumes become so big that caches need to age-out data pre-maturely

• Instantiating objects for rows takes a lot of memory (and CPU)
Data is always cached in multiple layers (jdbc, orm, …)

I know there are many realities out there.
But this is specific scenario that I'm

targeting, as it's the one I see most often

53

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

4 Scalability with Layered Architectures

• Looks fantastic on white-board, right?

• Different layers, separation of concerns

– Can hire expert for each layer

–Working/tweaking in own layer

• But what happens for problems that
require holistic approach like
performance?

–Q: Where is leverage with 6+ layers?

– A: There is none

JDBC
Persistence-fw

Model-fw
Business-fw
Control-fw

UI-fw

54

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

4 Scalability with Layered Architectures

• Q: So how do you scale?

• A: You use application parallelism (threading)

• Q: How much code do you need to write or run to make this work?

• A: A lot

Ties back into 'speed of development' issue

55

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Roadmap

Business Logic

What Is SmartDB?

Some History and Observations

Issues With Other Approaches

Debunking Performance and Scalability Argument

Closing Remarks

1

2

3

4

56

5

Next Section’s goal:
Create awareness of rather huge inefficiencies introduced by using
the database as just a persistence layer

6

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Summary Here

• Full story at Oracle Learning Library channel on YouTube

https://www.youtube.com/watch?v=8jiJDflpw4Y

Search: "toon koppelaars"

57

https://www.youtube.com/watch?v=8jiJDflpw4Y

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

What We Did

• Built Java batch program and measured performance

– Using straight Java on top of JDBC (no frameworks)

–With pattern we always see:
• Chatty

• All single-row, single-table SQL queries and DML

• Get data into mid-tier, use-once, write data back to database

• Rebuilt batch program in PL/SQL also
– Using same chatty row-by-row SQL behavior

– Same SQL statements

– Same business logic

58

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Load Profile

Program does a bit of everything:

• Single row inserts into five tables

• Indexed single row lookups from three tables

• Single row deletes from two tables

• Index maintenance on all involved tables

• Little bit of business logic

– Row-by-row looping, if-then-else code

Executes 5+ million
single-row SQL

statements

59

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Plain Java-on-JDBC vs. PLSQL (Both Row-by-Row)

Business logic
in Java with

embedded SQL

SQL

JVM

Invoke method on
main class

Invoke packaged
procedure

SQL engine

Business logic in
PL/SQL with

embedded SQL

SQL

SQL engine

Both single threaded
JVM on DB-server

60

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Plain Java-on-JDBC vs. PLSQL (Both Row-by-Row)

Business logic
in Java with

embedded SQL

SQL

JVM

SQL engine

Business logic in
PL/SQL with

embedded SQL

SQL

SQL engine

61

437 DB-CPU seconds

204 DB-CPU seconds

Elapsed-time: 11 minutes Elapsed-time: 3 minutes 30 seconds

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Execute Same SQL, Same Number of Times
Java/JDBC

PLSQL

62

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

AWR's Do Not Show Abnormalities: Both CPU Bound

Java/JDBC

PL/SQL

63

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

We Moved From NoPlsql to SmartDB

• Elapsed drops by 3X  #SmartDB is faster

• DB-CPU drops by 2X  #SmartDB is more scalable

• Seems like “SmartDB approach will saturate database" is false?

Gets work
done faster

while at same
time using less

CPU

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Wow…

• Single-row SQL from NoPlsql consumes 2X DB-CPU?

– 437 CPU seconds vs. 204 CPU seconds

• Why is that?

1. More code path

2. Worse "IpC"

65

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Why Is SmartDB So Much More Efficient in Executing SQL?

• "The Living Room" analogy

– Living room is where SQL engine resides

– PL/SQL is already in living room

• All other technologies have to enter through front-door
– Traverse hallway

– And only then enter living room

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Oracle

Linux

The Living Room

• SQL engine

SQL engine

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

The Living Room

• SQL engine

– Accessible via OPI layer

–Oracle Program Interface

• PL/SQL directly calls OPI

Oracle

Linux

OPI
SQL engine

PL/SQL engine
Embedded SQL

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Device-driver/Ethernet/IP/TCP-UDP/Sockets

Two-task

SQL*Net

TNS

Prot. adapter

Oracle

Linux

System library

SQL
The Living Room

• Outside SQL route:

–OS network/ipc layers
• Front door, doormat

–Net/TNS/TT layers
• hallway

–OPI

More code path:
which you start noticing
for single-row/single-table SQL

OPI
SQL engine

PL/SQL engine
Embedded SQL

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Investigated This Via FlameGraphs

FlameGraph visualizes
code-stacks where

process has spent its
time

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Visualizing This Via FlameGraphs

• More info:

– https://github.com/brendangregg/FlameGraph

• See also Luca Canali's blog

– http://externaltable.blogspot.nl/2014/05/flame-graphs-for-oracle.html

main

p1 p9

p4p2

p3

Width of top-surface represents where time is spent

Width represents # of samples = cpu-time spent

https://github.com/brendangregg/FlameGraph

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Oracle Server FlameGraph SmartDB

We're inside PLSQL
engine the whole time

Doing query
executes and

fetches

Deletes Inserts

And this is
PLSQL code

lines execution

204 DB-CPU seconds

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Oracle Server Flamegraph Java/JDBC

Shipping data in and
out of living room

Almost 30% of time

Deletes Inserts
Query executes

and fetches

437 DB-CPU seconds

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

That 30% Is in Fact a 43% Increase on Top Of the 70%

30% 70%

That's 43%, almost
50%, additional

code-path

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Digging Deeper

That's exactly the same code
executing 700K deletes.
Why is it taking longer?

437 DB-CPU seconds

204 DB-CPU seconds

Stretched Java/JDBC
FlameGraph to show

it takes 2x CPU

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Digging Deeper: CPU Efficiency

• Why is same code using more CPU cycles for NoPlsql?

• Let's use "perf stat" to get some insight here

– Reports CPU usage of a pid

perf stat -e cpu-clock,task-clock,cycles,instructions,bus-cycles,faults,cpu-migrations,cache-references,cache-misses,context-switches,branches,branch-misses -p <pid>

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

NoPlsql Consistently Results in Worse IPC (insns per cycle)

50% more instructions

Requiring 90% more CPU

Considerable worse IPC
Basically means: you run on a slower CPU

Caused by more branch misses

And more cache misses

"Perf stat" output summary
for duration of each run

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Any NoPlsql Approach Will Suffer From This

• OS has to wake up for every incoming SQL call

– To service the network interrupt, find process associated with socket

• Schedule that dedicated server process to start running

• Once it runs, hopefully on same core as previous call, code+data caches
likely full with other PID's stuff

• These tests were on idle server: on busy server expect this phenomenon
to become worse

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

What About Executing the Business Logic?

• The "app-server side": quite interesting too…
– Java/JDBC : 217 CPU seconds (11 minutes busy 33% in JVM)

– PL/SQL : 20 CPU seconds PLSQL execution time (Time Model in AWR)

• Ten times more expensive…

437 184

20217 > 10X

> 2X

Why 10X more CPU?

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

JVM FlameGraph Java/JDBC

Shipping data
in and out
1) Shipping

data in and out

Our "program"
2) Most of it is JDBC, ie. getting

SQL ready to be shipped

3) Rest is "JVM housekeeping"

217 CPU seconds

Why 10X more cpu?
PLSQL doesn't have any of

these three overheads

Our business logic is
simply not visible

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Comparing NoPlsql and ThickDB

• If you execute many single-row, single-table SQL
You start noticing overhead if SQL is not submitted from PL/SQL

– Both at database server and at application server

• Layered (MVC) software architectures come with considerable CPU cost

– Executing code through many object-oriented micro layers is not free

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Embracing Set-Based SQL

• Once you're in PL/SQL opportunities for set-based SQL open up naturally

– NoPlsql SW architectures simply prevent this as SQL is invisible

• Often parts of business logic can be rewritten into set-based SQL
– This pushes business logic further down, from PL/SQL into SQL

• RWP's consistent experience has been:

– From row-by-row to set-based  speedups of up to 2 orders of magnitude

– 100X faster is not uncommon

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Our Example Batch Program

• Able to rewrite using set-based multi-table insert statements (MTI)

• Row-by-row Java/JDBC used : 437 DB-CPU seconds

• Row-by-row PLSQL used : 204 DB-CPU seconds

• Set-based uses : 7 DB-CPU seconds

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Flamegraph set-based

Inside MTI the
whole time

Less hot-code as MTI
fits our problem

Less cache-misses

Set-based approaches
typically result in less hot-code size
Resulting in better cache-hit ratios

Resulting in better IPC

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Row-by-row NoPlsql 437

Row-by-row PLSQL 204

Set-based 7

In proportion

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Our Results Visualized

86

Not a little faster…
Just think about this…

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Set-Based Has Another Major Advantage

• If elapsed time of 7 seconds is still not fast enough…

• Just flip switch and have CBO generate a parallel execution plan

• In NoPlsql there's "Do it yourself parallelism" via threading

– Requiring development time orders of magnitude more than flipping switch

87

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Two additional points to be made (1/2)

• If network were involved, elapsed time for NoPlsql would be seriously
impacted

• You’ll spend a lot of time on the wire

437 184

20217
Five million
roundtrips…

(10K calls/second)

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Two additional points to be made (2/2)

• NoPlsql row-by-row solutions suffer from additional sys-time in OS

– Could easily be 5-10% additional cpu load on DB-server

– Depends on chatty-ness of application

Time spent in these does not show up as DB-TIME
It shows up as additional sys-time in the OS

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Check your SYS/USER CPU Ratio

90

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Debunking “Keep Business Logic Outside Database”

91

“We’ll adopt layered sw-
architecture to increase
developer productivity”

This results in DB-
server spending a lot
of CPU on stuff you

don’t care about

You now have,
1: Row-by-row SQL
2: Chatty app

You actually need
bigger DB-server

Database becomes
“bit-bucket”

All business
logic will be in

middle tier

Is capped
Can only be so big

Your scalability
stops sooner

rather than later

All use-cases in
your app will
run like a dog

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Roadmap

Business Logic

What Is SmartDB?

Some History and Observations

Issues With Other Approaches

Debunking Performance and Scalability Argument

Closing Remarks

1

2

3

4

92

5

6

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

What does all this mean?

• Trying to scale your NoPlsql application via many cheap middle tier servers
running BL will saturate your database server way earlier than when you
had employed SmartDB approach for your application

• Or,

• You can service more application users on the same database server if you
use the SmartDB approach

 Using database as processing engine saves you money

 Using database as bit-bucket costs you money

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

The Implication Of All This, Visualized

94

App
server

App
server

App
server

App
server

App
server

Database is always
first bottleneck100 TX/Sec200 TX/Sec300 TX/Sec400 TX/Sec500 TX/Sec

500 TX/Sec

With SmartDB you
can process more

with same hardware

With SmartDB you
can process same

with less DB licenses

N
O
P
L
S
Q

S
M
A
R
T
D
B

Set-based SQL…

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

2: SQL Isn’t Accidental: Au-Contraire, It’s Fundamental

• There are nearly always opportunities for your business logic to be pushed
into set-based SQL

• Why is this the case?

• There’s a fundamental reason for this...

95

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

2: SQL Isn’t Accidental: Au-Contraire, It’s Fundamental

96

The Real World

Us, living in the real
world, using natural
language to reason

with each other
about the real world

We reason in this
model using rich,

set-based, SQL

Application: model of a
part of the real world

about which we want to
reason using computers

SQL is based on logic and set theory

Logic and set theory are based on
natural language, particularly the

parts of it that deal with reasoning

So we reason in the model using
language that was based on how

we reason in the real-world
Ergo, SQL fundamentally fits what

we want to achieve

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

My Application Is Too Complex

• “I cannot do my application logic in SQL and PL/SQL”

– Both SQL and PL/SQL have become incredibly rich

– Given our context (transactional business applications) and SQL’s fundamental fit,
it would be strange if your logic cannot be dealt with

• Don’t underestimate width and depth of SQL and PL/SQL

• And all DB features surrounding these two languages

97

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Often This Is The Issue

• A mindshift is required:

• You need to start thinking in “processing data”

• Instead of “interacting with objects”

• A relational database design should be your frame of reference

• And not an (object oriented) domain model

98

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Finishing Up

• NoPlsql has had its reign

• Arguments for its rise,
– Have either not been delivered (code reuse, speed of development)

–Or, have been debunked (performance and scalability)

• Current JavaScript hype brings no new arguments to table

• SmartDB has survived in many (happy) pockets around the world
– PL/SQL and SQL have moved forward a lot since 2001

– It's high time for resurgence of using database as processing engine

– In Part 2 we will discuss how to adopt SmartDB approach

99

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 100

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 101

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 102

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 103

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

“Chatty” Applications

104

“Decrease discount
percentages for high-

risk order”

SQL engine

UI

SQL SQL SQL SQL SQL

Many roundtrips
between

processes/machinesSQL SQL

One set-based
update, referencing

multiple tables

SQL engine

UI

SQL

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

All SQL Sits Inside PL/SQL

105

“Decrease discount
percentages for high-

risk order”

SQL engine

UI

SQL SQL SQL SQL SQL SQL SQL

Stored procedure call

SQL + PL/SQL engine

UI

RPC

Preferably all SQL
sits inside PL/SQL

