
MAY 15 & 16, 2019

CLEVELAND PUBLIC AUDITORIUM, CLEVELAND, OHIO

WWW.NEOOUG.ORG/GLOC

Understanding SPARC 
Processor Performance



About the Speaker

• Akiva Lichtner

• Physics background

• Twenty years experience in IT

• Enterprise production support analyst

• Java developer

• Oracle query plan manager …

• Spoke here at G.L.O.C. about TDD and Java dynamic tracing



Audience

• Developers

• System administrators

• Tech support analysts

• IT managers



Motivation

• I have been working in tech support for a large application

• We have run SPARC T4 servers and now we run T7 servers

• Application servers, database servers

• Environments are all different

• Users complained for years about “environment X” being 
slow, finally figured out why

• What I learned can be very useful for users of SPARC servers



What is SPARC?

• First released in 1987, created by Sun Microsystems to replace 
the Motorola 68000 in its workstation products

• During the .com boom Solaris/SPARC and Windows/Intel were 
the only supported platforms for the JVM

• In 2000 the bubble burst and Sun server sales plunged

• Sun acquired Afara Websystems, which had built an interesting 
new processor, and renamed it the UltraSPARC T1

• Was followed by T2 through M8, evolutions of the same design

• More recently Oracle has added significant new functionality



Processor Design

• High core count (even in the early days)

• Many threads per core

• “Barrel” processor

• Designed to switch efficiently

• Non-uniform memory access

• Per-processor shared cache

• Core-level shared cache



A picture speaks a thousand words …



What happens if my threads run on the same core?

• Core runs one thread at a time
• Context switch is instantaneous
• Ideally memory latency hides context switch entirely
• However the caches have a limited size
• Performance will depend on cache utilization
• Are the threads on the same core “related” or not?
• I had a CPU-intensive application that would slow down by a 

factor of five at random times, in the presence of another CPU-
intensive application – coincidence?

• To Solaris one core looks like 8 virtual processors



What performance should I expect in general?

• It all depends

• Common for a Java application to have hundreds of threads

• These servers often consolidate independent applications

• By default, Solaris uses all the virtual processors

• Not a massive SMP machine

• Not a traditional CC-NUMA machine



Some experiments to illustrate

• One Java process, N threads

• Random reads/writes on one array of data

• Used pbind to influence choice of virtual processors



One core

1

3

5

7
0

5

10

15

20

1 core

0-5 5-10 10-15 15-20



Two cores

1

5

9

13
0

10

20

30

40

50

60

2 non-adjacent cores

0-10 10-20 20-30 30-40 40-50 50-60

1

5

9

13
0
5

10
15
20

4

1
6

6
4

2
5

6

1
0

2
4

4
0

9
6

1
6

3
8

4

6
5

5
3

6

2
6

2
1

4
4

2 adjacent cores

0-5 5-10 10-15 15-20



Four cores
4

3
2

2
5

6

2
0

4
8

1
6

3
8

4

1
3

1
0

7
2

1
0

4
8

5
7

6

8
3

8
8

6
0

8

0

20

40

60

80

100

1
4

7
10

13
16

19
22

25
28

31

4 non-adjacent cores

0-20 20-40 40-60 60-80 80-100

4

6
4

1
0

2
4

1
6

3
8

4

2
6

2
1

4
4

4
1

9
4

3
0

4

0

20

40

60

159
1317212529

4 adjacent cores

0-20 20-40 40-60



Multi-processor server

• For several years I had a problematic server

• I finally noticed that it had two processors

• Applications were mostly idle, but load average was high

• I think thread migration overhead was inflating the run queue

• A simple Java memory allocation test was 60% slower than on a 
single-processor server

• Once a single-processor server was installed, the problem 
disappeared



Choose application software carefully

• Well-designed concurrent applications

• Learn good concurrent programming

• Streaming applications

– Each core has a Data Analytics Acceleration (DAX) pipeline

– compare / filter / translate / compress

– Oracle Database, Apache Spark query acceleration

– Java Streams API

• Neural networks?



Solaris Resource Management

• Also known as Solaris Zones

• Not virtualization, still just one server

• Solaris “projects”

• Assign application processes to projects

• Create (virtual) processor sets

• Allocate virtual processors to processor sets



Solaris VM Server for SPARC

• Also known as Logical Domains

• This is virtualization

• Hypervisor

• Multiple instances of Solaris on the same server

• Allocate processors to different VMs



Dynamic Hardware Domains

• Hardware feature in M-Series servers

• Can add/delete/replace processor boards to domains



Take-aways

• There’s a lot to a modern SPARC processor

• This is not an SMP, not a CC-NUMA

• Complex, hierarchical structure

• With great power comes great responsibility

• If performance is a problem, consider your workload sharing

• Keep different applications on different cores

• Try to keep related apps on adjacent cores

• VMs and Zones are not nice to have, you need them


