Understanding SPARC
Processor Performance

ooooo

MAY 15'& 16, 2019 ?_ -
L J-"l

m ;. = CLEVELAND PUBLIC AUDITORIUM CLEVELAND, OHIO

S ot 1t Ll -
=E=a= s
E 3 : =
: 3 ity et o
iy IS -

gu...w : e .
T‘i 5 :ﬁmﬁmummk .rw:.m"mwf" WWWNEOOUS.ORG/GLOE .
i P g ey i T L mE Mg g e e

y 0-'300‘

About the Speaker

* Akiva Lichtner

* Physics background

* Twenty years experience in IT

* Enterprise production support analyst

* Java developer

* Oracle query plan manager ...

* Spoke here at G.L.O.C. about TDD and Java dynamic tracing

E6LOC

Audience

* Developers

System administrators

Tech support analysts

IT managers

E6LOC

Motivation

| have been working in tech support for a large application
* We have run SPARC T4 servers and now we run T7 servers

Application servers, database servers

Environments are all different

Users complained for years about “environment X” being
slow, finally figured out why

What | learned can be very useful for users of SPARC servers

E6LOC

What is SPARC?

* First released in 1987, created by Sun Microsystems to replace
the Motorola 68000 in its workstation products

* During the .com boom Solaris/SPARC and Windows/Intel were
the only supported platforms for the JVM

* |In 2000 the bubble burst and Sun server sales plunged

* Sun acquired Afara Websystems, which had built an interesting
new processor, and renamed it the UltraSPARC T1

* Was followed by T2 through M8, evolutions of the same design
* More recently Oracle has added significant new functionality

E6LOC

Processor Design

* High core count (even in the early days)
* Many threads per core

I”

* “Barrel” processor
* Designed to switch efficiently
* Non-uniform memory access
* Per-processor shared cache

* Core-level shared cache

E6LOC

A picture speaks a thousand words ...

/O Links
Coherence/Scalability Links

colci|cz]cs ca|cs5|ce|cCT .Illl c8 | co [c1o]c1d

L2 D Cache L2 D Cache | L2 D Cache L2 D Cache L2 D Cache L2 D Cache
" L2iCache | L2ICache 7 L2iCache
L3 Cache 8MB L3 Cache 8MB L3 Cache 8MB L3 Cache 8MB

Accelerator ‘

McU

MCU
On-Chip Network

DDR4 memory Ci12|C13|C14 [C15

DDR4 memory

L2 D Cache L2 D Cache

MCU MCU
Accelerator

Accelerator
Accelerator | Accelerator

L3 Cache 8MB .3 Cache 8MB 1.3 Cache 8MB
| 12ICache [L21Cache
L2 D Cache L2 D Cache || L2 D Cache L2 D Cache L2 D Cache L2D L2 D Cache L2D

C18|C17 | C18 | C19 C20 | C21 | C22 | C23 lIlII C28 | C29 | C30

Coherence/Scalability Links

L.3 Cache 8MB

I/0 Links

What happens if my threads run on the same core?

* Core runs one thread at a time

* Context switch is instantaneous

* |deally memory latency hides context switch entirely
* However the caches have a limited size

* Performance will depend on cache utilization

* Are the threads on the same core “related” or not?

* | had a CPU-intensive application that would slow down by a
factor of five at random times, in the presence of another CPU-
intensive application — coincidence?

* To Solaris one core looks like 8 virtual processors

E6LOC

What performance should | expect in general?

It all depends

Common for a Java application to have hundreds of threads

These servers often consolidate independent applications

By default, Solaris uses all the virtual processors
* Not a massive SMP machine
Not a traditional CC-NUMA machine

E6LOC

Some experiments to illustrate

* One Java process, N threads
* Random reads/writes on one array of data
* Used pbind to influence choice of virtual processors

E6LOC

copct |2l &3 SAjcsjoulor lCl = N S0 5] Crricjcujcis

a . ~ » . - L *) W N » . .
5 g3 OAG BAYE
3 AT
1 core
Aot Accacutar
D Cacl D o D o2 D . 0 4y D . D Clacd .‘ll

cmjerr culcml cm e cn ':nl cH|C= «:za|cz.'| O EIESED
20 /
15
10 \
5
0 N 7

£
S v >
" %
N 3
Vo v
N 1
N " e
Q (%) a
L SR AN
QP
©
N

[J0-5 [15-10 O10-15 [@15-20 G Loc

60

50

40

30

20

10

2 non-adjacent cores

00-10 010-20 O20-30 [30-40 [140-50 O50-60

co [Crifica s QR cales|ouler

b | e10 o1y Eafem e

3 A TEEETE
.
At atex Acascuton
D Cacl 0 2 D) ch D f 0 4y D D Clacd .‘1‘
- ric - G [+ C C 08 = | 3% i 22 o 1
cmle rulrml cmicH icn _nl FOAESE |cz.| C28 § 25 =10 |

20
15
10

16
64

©0

<
QN9 o
o D 0
- O ® <
S B

© 1 I
Ll

o
© &
o~

=

0Jo0-5 [5-10 O10-15 [15-20

13

®
<
O o0 ~
N NN~
© o
-
(32}
-

[0-20

4 non-adjacent cores

1048576

[020-40 O40-60 O60-80 [180-100

100

co ot]ca | sl les] culer m.’o EnE | EEnEnE
) o W N » 'l .

aMs e e 55 5 0ALE gAY

3 A TEEETE
.
At atex Acascuton
D Cac 0 - 4 ch D - D Cac . . D Cladt D‘ll -
- ric - G [o2 C C l K R i o= 1
zmle rulrml = R = _nl £ | = = Im“ﬁ £3 I

4 adjacent cores

60
O . 40
e __' I. : e - 20
-h..:_ > . ey 0
* o 1
Yoo - 9 5
© 2 < 17 13
S 0 < 21
T8 g9
- N ™
QS
-
<

[J0-20 [120-40 O40-60] c

Multi-processor server

* For several years | had a problematic server

* | finally noticed that it had two processors

* Applications were mostly idle, but load average was high

* | think thread migration overhead was inflating the run queue

* Asimple Java memory allocation test was 60% slower than on a
single-processor server

* Once a single-processor server was installed, the problem
disappeared

E6LOC

Choose application software carefully

* Well-designed concurrent applications
* Learn good concurrent programming

* Streaming applications
— Each core has a Data Analytics Acceleration (DAX) pipeline
— compare / filter / translate / compress
— Oracle Database, Apache Spark query acceleration
— Java Streams API

Neural networks?

E6LOC

Solaris Resource Management

Also known as Solaris Zones

Not virtualization, still just one server

Solaris “projects”

Assign application processes to projects

Create (virtual) processor sets

Allocate virtual processors to processor sets

E6LOC

Solaris VM Server for SPARC

Also known as Logical Domains

This is virtualization
* Hypervisor

Multiple instances of Solaris on the same server

Allocate processors to different VMs

E6LOC

Dynamic Hardware Domains

* Hardware feature in M-Series servers
* Can add/delete/replace processor boards to domains

E6LOC

Take-aways

* There’s a lot to a modern SPARC processor

* This is not an SMP, not a CC-NUMA

* Complex, hierarchical structure

* With great power comes great responsibility

* |f performance is a problem, consider your workload sharing
* Keep different applications on different cores

* Try to keep related apps on adjacent cores

* VMs and Zones are not nice to have, you need them

E6LOC

