

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

JSON & Relational Databases... of Course!

Dan McGhan
Developer Advocate @Oracle
May 16, 2019

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement
The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

3

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

About me
• Dan McGhan

– Developer Advocate @ Oracle
– Focus on JavaScript and Oracle Database

• Contact Info
– dan.mcghan@oracle.com
– @dmcghan
– jsao.io

4

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

The relational model
• Based on mathematical logic & set theory
• Used to

– Eliminate redundant data
– Prevent data anomalies
– Maximize flexibility, prevent database redesigns

5

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 6

Id Project Task Due On Status Assigned Location Budget

1 Main website Migrate to Oracle JET 2016-03-08 Complete Dan McGhan & Shakeeb Rahman Brooklyn & Reston 15,000

2 Main website QA Testing 2016-05-21 Pending Steven Feuerstein Chicago 15,000

3 Database Upgrade Upgrade DEV to 12c 2016-04-15 Open Gerald Venzl San Francisco 12,000

4 Database Upgrade Regression Testing 2016-04-22 Pending Chris Jones Perth 12,000

Tasks

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 7

Id Project Task Due On Status Assigned Location Budget

1 Main website Migrate to Oracle JET 2016-03-08 Complete Dan McGhan & Shakeeb Rahman Brooklyn & Reston 15,000

2 Main website QA Testing 2016-05-21 Pending Steven Feuerstein Chicago 15,000

3 Database Upgrade Upgrade DEV to 12c 2016-04-15 Open Gerald Venzl San Francisco 12,000

4 Database Upgrade Regression Testing 2016-04-22 Pending Chris Jones Perth 12,000

Tasks

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 8

Id Project Task Due On Status Assigned Location Budget

1 Main website Migrate to Oracle JET 2016-03-08 Complete Dan McGhan & Shakeeb Rahman Brooklyn & Reston 15,000

2 Main website QA Testing 2016-05-21 Pending Steven Feuerstein Chicago 15,000

3 Database Upgrade Upgrade DEV to 12c 2016-04-15 Open Gerald Venzl San Francisco 12,000

4 Database Upgrade Regression Testing 2016-04-22 Pending Chris Jones Perth 12,000

Tasks

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 9

Id Project Task Due On Status Assigned Location Budget

1 Main website Migrate to Oracle JET 2016-03-08 Complete Dan McGhan & Shakeeb Rahman Brooklyn & Reston 15,000

2 Main website QA Testing 2016-05-21 Pending Steven Feuerstein Chicago 15,000

3 Database Upgrade Upgrade DEV to 12c 2016-04-15 Open Gerald Venzl San Francisco 12,000

4 Database Upgrade Regression Testing 2016-04-22 Pending Chris Jones Perth 12,000

Tasks

Tasks

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 10

Id Project Task Due On Status Assigned Location Budget

1 Main website Migrate to Oracle JET 2016-03-08 Complete Dan McGhan & Shakeeb Rahman Brooklyn & Reston 15,000

2 Main website QA Testing 2016-05-21 Pending Steven Feuerstein Chicago 15,000

3 Database Upgrade Upgrade DEV to 12c 2016-04-15 Open Gerald Venzl San Francisco 12,000

4 Database Upgrade Regression Testing 2016-04-22 Pending Chris Jones Perth 12,000

Tasks

Tasks Projects

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 11

Id Project Task Due On Status Assigned Location Budget

1 Main website Migrate to Oracle JET 2016-03-08 Complete Dan McGhan & Shakeeb Rahman Brooklyn & Reston 15,000

2 Main website QA Testing 2016-05-21 Pending Steven Feuerstein Chicago 15,000

3 Database Upgrade Upgrade DEV to 12c 2016-04-15 Open Gerald Venzl San Francisco 12,000

4 Database Upgrade Regression Testing 2016-04-22 Pending Chris Jones Perth 12,000

Tasks

Tasks Projects People

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Id Name Due On Status

1 Migrate to Oracle JET 2016-03-08 Complete

2 QA Testing 2016-05-21 Pending

3 Upgrade DEV to 12c 2016-04-15 Open

4 Regression Testing 2016-04-22 Pending

12

Tasks

Projects

Id Name Budget

1 Main website 15,000

2 Database Upgrade 12,000

People

Id Name Location

1 Dan McGhan Brooklyn

2 Shakeeb Rahman Reston

3 Steven Feuerstein Chicago

4 Gerald Venzl San Francisco

5 Chris Jones Perth

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Id Name Due On Status

1 Migrate to Oracle JET 2016-03-08 Complete

2 QA Testing 2016-05-21 Pending

3 Upgrade DEV to 12c 2016-04-15 Open

4 Regression Testing 2016-04-22 Pending

Tasks

Projects

Id Name Budget

1 Main website 15,000

2 Database Upgrade 12,000

Project Id Person 1 Id Person 2 Id

People

Id Name Location

1 Dan McGhan Brooklyn

2 Shakeeb Rahman Reston

3 Steven Feuerstein Chicago

4 Gerald Venzl San Francisco

5 Chris Jones Perth

13

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Id Name Due On Status

1 Migrate to Oracle JET 2016-03-08 Complete

2 QA Testing 2016-05-21 Pending

3 Upgrade DEV to 12c 2016-04-15 Open

4 Regression Testing 2016-04-22 Pending

14

Tasks

Projects

People

Id Name Budget

1 Main website 15,000

2 Database Upgrade 12,000

Id Name Location

1 Dan McGhan Brooklyn

2 Shakeeb Rahman Reston

3 Steven Feuerstein Chicago

4 Gerald Venzl San Francisco

5 Chris Jones Perth

Project Id Person 1 Id Person 2 Id

1

1

2

2

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Id Name Due On Status

1 Migrate to Oracle JET 2016-03-08 Complete

2 QA Testing 2016-05-21 Pending

3 Upgrade DEV to 12c 2016-04-15 Open

4 Regression Testing 2016-04-22 Pending

15

Tasks

Projects

People

Id Name Budget

1 Main website 15,000

2 Database Upgrade 12,000

Id Name Location

1 Dan McGhan Brooklyn

2 Shakeeb Rahman Reston

3 Steven Feuerstein Chicago

4 Gerald Venzl San Francisco

5 Chris Jones Perth

Project Id Person 1 Id Person 2 Id

1 1 2

1 3

2 4

2 5

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Id Name Due On Status

1 Migrate to Oracle JET 2016-03-08 Complete

2 QA Testing 2016-05-21 Pending

3 Upgrade DEV to 12c 2016-04-15 Open

4 Regression Testing 2016-04-22 Pending

16

Tasks

Projects

People

Id Name Budget

1 Main website 15,000

2 Database Upgrade 12,000

Id Name Location

1 Dan McGhan Brooklyn

2 Shakeeb Rahman Reston

3 Steven Feuerstein Chicago

4 Gerald Venzl San Francisco

5 Chris Jones Perth

Project Id

1

1

2

2

Person Task Lookup

Person Id Task Id

1 1

2 1

3 2

4 3

5 4

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Id Name Due On Status

1 Migrate to Oracle JET 2016-03-08 Complete

2 QA Testing 2016-05-21 Pending

3 Upgrade DEV to 12c 2016-04-15 Open

4 Regression Testing 2016-04-22 Pending

17

Tasks

Projects

People

Id Name Budget

1 Main website 15,000

2 Database Upgrade 12,000

Id Name Location

1 Dan McGhan Brooklyn

2 Shakeeb Rahman Reston

3 Steven Feuerstein Chicago

4 Gerald Venzl San Francisco

5 Chris Jones Perth

Project Id

1

1

2

2

Person Task Lookup

Person Id Task Id

1 1

2 1

3 2

4 3

5 4
Normalization

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 18

select t.id, t.name, t.due_on, t.status
from tasks t

Id Name Due On Status

1 Migrate to Oracle JET 2016-03-08 Complete

2 QA Testing 2016-05-21 Pending

3 Upgrade DEV to 12c 2016-04-15 Open

4 Regression Testing 2016-04-22 Pending

SQL

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 19

select t.id, p.name project, t.name task, t.due_on, t.status, p.budget
from tasks t
join projects p on t.project_id = p.id

Id Project Task Due On Status Budget

1 Main website Migrate to Oracle JET 2016-03-08 Complete 15,000

2 Main website QA Testing 2016-05-21 Pending 15,000

3 Database Upgrade Upgrade DEV to 12c 2016-04-15 Open 12,000

4 Database Upgrade Regression Testing 2016-04-22 Pending 12,000

SQL

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 20

SQL
select t.id, p.name project, t.name task, t.due_on, t.status,
listagg(pp.name, ' & ') within group (order by pp.name) assigned,
listagg(pp.location, ' & ') within group (order by pp.name) location,
p.budget

from tasks t
join projects p on t.project_id = p.id
join person_task_lookup ptl on t.id = ptl.task_id
join people pp on ptl.person_id = pp.id
group by t.id, p.name, t.name, t.due_on, t.status, p.budget

Id Project Task Due On Status Assigned Location Budget

1 Main website Migrate to Oracle JET 2016-03-08 Complete Dan McGhan & Shakeeb Rahman Brooklyn & Reston 15,000

2 Main website QA Testing 2016-05-21 Pending Steven Feuerstein Chicago 15,000

3 Database Upgrade Upgrade DEV to 12c 2016-04-15 Open Gerald Venzl San Francisco 12,000

4 Database Upgrade Regression Testing 2016-04-22 Pending Chris Jones Perth 12,000

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

How a
front-end
developer
feels

21

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 22

var tasks;

tasks = JSON.parse(api.getJSONData());

tasks.forEach(function(task) {
doSomethingAwesome(task);

});

JSON .parse()

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

So, why JSON?
• Easy for humans to read
• Easy for machines to parse
• Very, very flexible

– Use where the relational model isn’t a good fit

23

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

JSON overview
• Based on two structures (can be nested)

• Objects are made of key/value pairs
– Keys are double quoted
– Keys & values are separated by a colon
– Key/value pairs are separated by comma

• Values can be one of the following

24

object: {} array: []

structure: object or array

Boolean: true or falsestring: “test” number: 100

no value: null

{
"key": "value",
"key2": []

}

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

JSON overview
• Based on two structures (can be nested)

• Objects are made of key/value pairs
– Keys are double quoted
– Keys & values are separated by a colon
– Key/value pairs are separated by comma

• Values can be one of the following

25

object: {} array: []

structure: object or array

Boolean: true or falsestring: “test” number: 100

no value: null

{
"key": "value",
"key2": []

}

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

JSON overview
• Based on two structures (can be nested)

• Objects are made of key/value pairs
– Keys are double quoted
– Keys & values are separated by a colon
– Key/value pairs are separated by comma

• Values can be one of the following

26

object: {} array: []

structure: object or array

Boolean: true or falsestring: “test” number: 100

no value: null

{
"key": "value",
"key2": []

}

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

JSON overview
• Based on two structures (can be nested)

• Objects are made of key/value pairs
– Keys are double quoted
– Keys & values are separated by a colon
– Key/value pairs are separated by comma

• Values can be one of the following

27

object: {} array: []

structure: object or array

Boolean: true or falsestring: “test” number: 100

no value: null

{
"key": "value",
"key2": []

}

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

JSON overview
• Based on two structures (can be nested)

• Objects are made of key/value pairs
– Keys are double quoted
– Keys & values are separated by a colon
– Key/value pairs are separated by comma

• Values can be one of the following

28

object: {} array: []

structure: object or array

Boolean: true or falsestring: “test” number: 100

no value: null

{
"key": "value",
"key2": []

}

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 29

Id Project Task Due On Status Assigned Location Budget

1 Main website Migrate to Oracle JET 2016-03-08 Complete Dan McGhan & Shakeeb Rahman Brooklyn & Reston 15,000

2 Main website QA Testing 2016-05-21 Pending Steven Feuerstein Chicago 15,000

3 Database Upgrade Upgrade DEV to 12c 2016-04-15 Open Gerald Venzl San Francisco 12,000

4 Database Upgrade Regression Testing 2016-04-22 Pending Chris Jones Perth 12,000

Tasks

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 30

[
{
"id": 1,
"project": "Main website",
"task": "Migrate to Oracle JET",
"due_on": "2016-03-08",
"status": "Complete",
"assigned": "Dan McGhan & Shakeeb Rahman",
"location": "Brooklyn & Reston",
"budget": 15000

},
...

]

Tasks JSONas

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Other notes on JSON structure
• JSON is schemaless

• There is no standard for handling dates
– People often use:

• ISO 8601: "2016-01-20T16:17:52.792Z"
• Epoch time: 1453324612507

31

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Other notes on JSON structure
• JSON is schemaless

• There is no standard for handling dates
– People often use:

• ISO 8601: "2016-01-20T16:17:52.792Z"
• Epoch time: 1453324612507

32

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

DB features and tools for working with JSON
• DB features

– SQL for querying JSON
– Data Guide for understanding JSON
– SQL for generating JSON
– PL/SQL for processing JSON
– SODA for a JSON document store

• Tools
– ORDS for serving JSON via REST APIs

• Relational and SODA

33

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

SQL for querying JSON

34

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Storing JSON in Oracle
• Use existing types to store JSON

– VARCHAR2
– CLOB
– BLOB

• Add an IS JSON constraint
– Ensures validity of content
– Enables some JSON functions
– Can be strict or lax (defaults to lax)

35

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Storing JSON in Oracle
• Use existing types to store JSON

– VARCHAR2
– CLOB
– BLOB

• Add an IS JSON constraint
– Ensures validity of content
– Enables some JSON functions
– Can be strict or lax (defaults to lax)

36

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Querying JSON
• Oracle provides two mechanisms for working with JSON from SQL

– A “Simplified Syntax” that enables simple operations directly from SQL
– JSON operators that enable more complex operations

• Included in the SQL 2017 standard
• Syntax developed in conjunction with IBM

• Both techniques use JSON path expressions to navigate documents
– JSON path syntax is derived from JavaScript

37

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Querying JSON
• Simple Queries using simplified syntax

• Advanced queries using JSON Operators and JSON path expressions

38

select JSON_VALUE(JSON_DOCUMENT, '$.screens[0].ticketPricing.adultPrice' returning NUMBER(5,3))
from THEATER
where JSON_VALUE(JSON_DOCUMENT, '$.id' returning NUMBER(10)) = 1

select to_clob(t.JSON_DOCUMENT)
from THEATER t
where t.JSON_DOCUMENT.id = 1

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Join between JSON documents

39

select t.JSON_DOCUMENT.name, m.JSON_DOCUMENT.title
from THEATER t, "Movie" m, "Screening" s
where t.JSON_DOCUMENT.id = s.JSON_DOCUMENT.theaterId
and m.JSON_DOCUMENT.id = s.JSON_DOCUMENT.movieId
and s.JSON_DOCUMENT.startTime = '2017-02-07T12:25:00-08:00'

NAME TITLE
-------------------------------- --------------------------------
Regal Jack London Stadium 9 The Boy
Regal Jack London Stadium 9 The Wild Life
UA Stonestown Twin Equals
Century 20 Daly City and XD Ice Age: Collision Course
CineLux Chabot Cinema Cafe Society
Tiburon Playhouse 3 Theatre Equals
Century Theatres at Hayward Florence Foster Jenkins
Alameda Theatre & Cineplex The Secret Life of Pets
Renaissance Grand Lake Theatre Hail, Caesar!
Piedmont Theatre Equals

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

SQL/JSON operators
Operator Description

IS [NOT] JSON o test whether some data is well-formed JSON data.
o used as a check constraint.

JSON_VALUE o select a scalar value from some JSON data, as a SQL value.
o used in the select list or where clause or to create a functional index

JSON_QUERY o select one or more values from some JSON data as a SQL string
o used especially to retrieve fragments of a JSON document

JSON_EXISTS o test for the existence of a particular value within some JSON data.

JSON_TABLE o project some JSON data to a relational format as a virtual table

JSON_TEXTCONTAINS otest for existence based on a text predicate

40

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

JSON_TABLE
• Generates in-line views of JSON content
• Used in the from clause of a SQL statement
• JSON Path expressions used to pivot values into columns
• One row is output for each node identified by the Row Pattern
• Use JSON_TABLE rather than large numbers of JSON_VALUE operators

41

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Using JSON_TABLE

select THEATER_ID, NAME, STREET, CITY, ZIP
from THEATER,

JSON_TABLE(
JSON_DOCUMENT, '$' columns (
THEATER_ID NUMBER(4) path '$.id'

, NAME VARCHAR2(16) path '$.name'
, STREET VARCHAR2(24) path '$.location.street'
, CITY VARCHAR2(32) path '$.location.city'
, STATE VARCHAR2(02) path '$.location.state'
, ZIP NUMBER(5) path '$.location.zipCode'
)

) tm
where ZIP = 94115

THEATER_ID NAME STREET CITY ST ZIP
---------- ---------------- ------------------------ ----------------------------- -- ------

29 1881 Post Street SAN FRANCISCO CA 94115
30 Clay Theatre 2261 Fillmore Street SAN FRANCISCO CA 94115
36 Vogue Theatre 3290 Sacramento Street SAN FRANCISCO CA 94115

42

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

JSON Search Index: A universal index for JSON content

• Supports searching on JSON using key, path and value
• Supports range searches on numeric values
• Supports full text searches:

– Full boolean search capabilities (and, or, and not)
– Phrase search, proximity search and "within field" searches.
– Inexact queries: fuzzy match, soundex and name search.
– Automatic linguistic stemming for 32 languages
– A full, integrated ISO thesaurus framework

43

create search index THEATER_SEARCH on THEATER (JSON_DOCUMENT) for JSON

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Query Optimizations for JSON
Exadata Smart Scans
• Exadata Smart Scans execute portions of SQL queries

on Exadata storage cells

• JSON query operations ‘pushed down’ to Exadata
storage cells
• Massively parallel processing of JSON documents

In-Memory Columnstore
• Virtual columns, included those generated using JSON

Data Guide loaded into in-memory Virtual Columns

• JSON documents loaded using a highly optimized in-
memory binary format

• Query operations on JSON content automatically
directed to in-memory

44

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Data Guide for understanding JSON

45

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Understanding your JSON with Data Guide

• Metadata discovery: discovers the structure of
collection of JSON documents
– Optional: deep analysis of JSON for List of Values, ranges,

sizing, etc.

• Automatically Generates
– Virtual columns
– Relational views

• De-normalized relational views for arrays

– Reports/Synopsis of JSON structure

46

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Generating a snapshot JSON data guide

• Two new aggregation operators
– JSON_DATAGUIDE returns a flat data guide
– JSON_HEIRDATAGUIDE returns a JSON schema

• Use SQL to filter and group documents

• Results in a point-in-time snapshot of the
matching JSON documents

[
{ "o:path": "$.movieId",

"type": "number",
"o:length": 8 },

{ "o:path": "$.screenId",
"type": "number",
"o:length": 2 },

{ "o:path": "$.startTime",
"type": "string",
"o:length": 32 },

{ "o:path": "$.theaterId",
"type": "number",
"o:length": 2 },

{ "o:path": "$.ticketPricing",
"type": "object",
"o:length": 64 },

{ "o:path": "$.ticketPricing.adultPrice",
"type": "number",
"o:length": 8 }, …

{ "o:path": "$.seatsRemaining",
"type": "number",
"o:length": 4

}
]

select JSON_DATAGUIDE(JSON_DOCUMENT)
from "Screening"

47

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Using SQL to flatten a data guide

JSON_PATH JSON_TYPE LENGTH
----------------------------- ---------- -----------
$.movieId number 8
$.screenId number 2
$.seatsRemaining number 4
$.startTime string 32
$.theaterId number 2
$.ticketPricing object 64
$.ticketPricing.adultPrice number 8
$.ticketPricing.childPrice number 4
$.ticketPricing.seniorPrice number 4

WITH DATA_GUIDE AS (
SELECT json_dataguide(JSON_DOCUMENT) JDG

FROM "Screening“
)
SELECT jt.*

FROM DATA_GUIDE,
json_table(JDG, '$[*]' COLUMNS (

JSON_PATH VARCHAR2(40) PATH '$."o:path"',
JSON_TYPE VARCHAR2(10) PATH '$."type"',
LENGTH NUMBER PATH '$."o:length"')

) jt
ORDER BY jt.JSON_PATH

48

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Relational access to JSON content

• Automatically create a relational view of
your JSON content
– Views are based on JSON_TABLE operator

• Use the PATH argument to control which
keys are included in the view

• Automatically generates unique column
names

desc THEATER_VIEW
Name Null? Type
--------------------------- -------- -------------
ID NOT NULL VARCHAR2(255)
CREATED_ON NOT NULL TIMESTAMP(6)
LAST_MODIFIED NOT NULL TIMESTAMP(6)
VERSION NOT NULL VARCHAR2(255)
JSON_DOCUMENT$id NUMBER
JSON_DOCUMENT$name VARCHAR2(64)
JSON_DOCUMENT$city VARCHAR2(32)
JSON_DOCUMENT$state VARCHAR2(2)
JSON_DOCUMENT$street VARCHAR2(64)
JSON_DOCUMENT$zipCode VARCHAR2(8)
JSON_DOCUMENT$phoneNumber VARCHAR2(4)

select count(*) COUNT
from THEATER_VIEW
where "JSON_DOCUMENT$zipCode" = 94115

COUNT

3

call DBMS_JSON.CREATE_VIEW_ON_PATH(
'THEATER_VIEW',
'THEATER',
'JSON_DOCUMENT',
'$.id'

)

49

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Adding virtual columns

• Adds virtual columns for keys that occur
at most once in a document

• Cannot add virtual columns for keys
within arrays due to cardinality

desc "Screening"
Name Null? Type
------------------- -------- --------------------------
--
ID NOT NULL VARCHAR2(255)
CREATED_ON NOT NULL TIMESTAMP(6)
LAST_MODIFIED NOT NULL TIMESTAMP(6)
VERSION NOT NULL VARCHAR2(255)
JSON_DOCUMENT BLOB

declare
V_DATAGUIDE CLOB;

begin
select JSON_HIERDATAGUIDE(JSON_DOCUMENT)
into V_DATAGUIDE
from "Screening";

DBMS_JSON.ADD_VIRTUAL_COLUMNS(
'"Screening"', 'JSON_DOCUMENT', V_DATAGUIDE

);
end;

desc "Screening"
Name Null? Type
------------------- -------- ------------------------
ID NOT NULL VARCHAR2(255)
CREATED_ON NOT NULL TIMESTAMP(6)
LAST_MODIFIED NOT NULL TIMESTAMP(6)
VERSION NOT NULL VARCHAR2(255)
JSON_DOCUMENT BLOB
movieId NUMBER
screenId NUMBER
startTime VARCHAR2(32)
theaterId NUMBER
adultPrice NUMBER
childPrice NUMBER
seniorPrice NUMBER
seatsRemaining NUMBER

50

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Capturing changes to the structure of your JSON
• Create a table to record the change

log
• Create a ‘on change’ procedure that

writes the changes to the log table

create table JSON_CHANGE_LOG(
TABLE_NAME VARCHAR2(128),
COLUMN_NAME VARCHAR2(128),
JSON_PATH VARCHAR2(4000),
JSON_TYPE NUMBER(2),
TYPE_LENGTH NUMBER(4),
USERID VARCHAR2(128),
TIMESTAMP TIMESTAMP(6) WITH TIME ZONE

)

CREATE PROCEDURE LOG_JSON_CHANGES(
P_TABLE_NAME VARCHAR2,
P_COLUMN_NAME VARCHAR2,
P_PATH VARCHAR2,
P_JSON_TYPE NUMBER,
P_TYPE_LENGTH NUMBER)

as
begin

insert into JSON_CHANGE_LOG
values (P_TABLE_NAME, P_COLUMN_NAME, P_PATH,

P_JSON_TYPE, P_TYPE_LENGTH,
SYS_CONTEXT('USERENV','CURRENT_USER'),
SYS_EXTRACT_UTC(CURRENT_TIMESTAMP));

end;

51

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Capturing changes to the structure of your JSON
• Create a data guide enabled search index

– “SEARCH_ON NONE” prevents the index
functioning as a search index

– Attach the procedure to the index

• The change procedure is called once for each new
path found while building the index

• The change procedure is called every time a new
path is found during insert and update operations

CREATE INDEX SCREENING_SEARCH
ON "Screening" (JSON_DOCUMENT) FOR JSON

PARAMETERS ('SEARCH_ON NONE
DATAGUIDE ON
CHANGE LOG_JSON_CHANGES')

select JSON_PATH, JSON_TYPE, USERID, TIMESTAMP
from JSON_CHANGE_LOG

JSON_PATH JSON_TYPE USERID TIMSTAMP
-------------------- ----------- ---------- ----------
$.movieId 3 STUDENT01 2017-02-05T14:57:37Z
$.screenId 3 STUDENT01 2017-02-05T14:57:37Z
$.startTime 4 STUDENT01 2017-02-05T14:57:37Z
$.theaterId 3 STUDENT01 2017-02-05T14:57:37Z
$.ticketPricing 5 STUDENT01 2017-02-05T14:57:37Z
$.ticketPricing.adultPrice 3 STUDENT01 2017-02-05T14:57:37Z
$.ticketPricing.childPrice 3 STUDENT01 2017-02-05T14:57:37Z
$.ticketPricing.seniorPrice 3 STUDENT01 2017-02-05T14:57:37Z
$.seatsRemaining 3 STUDENT01 2017-02-05T14:57:37Z

9 rows selected.

52

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Demo:
Exploring JSON Data

53

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

SQL for generating JSON

54

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

JSON Generation
• Operators defined by SQL Standards body

– JSON_ARRAY, JSON_OBJECT, JSON_ARRAYAGG and JSON_OBJECTAGG
– Nesting of operators enables generation of complex JSON documents

• Simplifies generating JSON documents from SQL Queries
– Eliminate syntactic errors associated with string concatenation

• Improves performance
– Eliminate multiple round trips between client and server

55

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

JSON_ARRAY: Representing rows as arrays

56

select JSON_ARRAY(EMPLOYEE_ID, FIRST_NAME, LAST_NAME) JSON
from HR.EMPLOYEES

JSON

[100,"Steven","King"]
[101,"Neena","Kochhar"]
[102,"Lex","De Haan"]
[103,"Alexander","Hunold"]
[104,"Bruce","Ernst"]
[105,"David","Austin"]
[106,"Valli","Pataballa"]
[107,"Diana","Lorentz"]
[108,"Nancy","Greenberg"]
[109,"Daniel","Faviet"]
[110,"John","Chen"]

• Generates a JSON array from each row returned by
the query

• The array contains one item for each column
specified in the JSON_ARRAY operator

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

JSON_OBJECT : Representing rows as objects

57

select JSON_OBJECT(
'Id' is EMPLOYEE_ID,
'FirstName' is FIRST_NAME,
'LastName' is LAST_NAME

) JSON
from HR.EMPLOYEES

JSON
--
{"Id":100,"FirstName":"Steven","LastName":"King"}
{"Id":101,"FirstName":"Neena","LastName":"Kochhar"}
{"Id":102,"FirstName":"Lex","LastName":"De Haan"}
{"Id":103,"FirstName":"Alexander","LastName":"Hunold"}
{"Id":104,"FirstName":"Bruce","LastName":"Ernst"}
{"Id":105,"FirstName":"David","LastName":"Austin"}
{"Id":106,"FirstName":"Valli","LastName":"Pataballa"}
{"Id":107,"FirstName":"Diana","LastName":"Lorentz"}
{"Id":108,"FirstName":"Nancy","LastName":"Greenberg"}
{"Id":109,"FirstName":"Daniel","LastName":"Faviet"}
{"Id":110,"FirstName":"John","LastName":"Chen"}

• Generates a JSON Object from each
row returned by the query

• The Object contains a key:value pair
for each pair of arguments specified
in the JSON_OBJECT operator

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

JSON_ARRAYAGG: Embedding arrays in documents

58

select JSON_OBJECT(
'departmentId' is d.DEPARTMENT_ID,
'name' is d. DEPARTMENT_NAME,
'employees' is (

select JSON_ARRAYAGG(
JSON_OBJECT(
'employeeId' is EMPLOYEE_ID,
'firstName' is FIRST_NAME,
'lastName' is LAST_NAME,
'emailAddress' is EMAIL

)
)

from HR.EMPLOYEES e
where e.DEPARTMENT_ID = d.DEPARTMENT_ID

)
) DEPT_WITH_EMPLOYEES

from HR.DEPARTMENTS d
where DEPARTMENT_NAME = 'Executive'

DEPT_WITH_EMPLOYEES
--
{

"departmentId": 90,
"name": "Executive",
"employees": [

{
"employeeId": 100,
"firstName": "Steven",
"lastName": "King",
"emailAddress": "SKING"

}, {
"employeeId": 101,
"firstName": "Neena",
"lastName": "Kochhar",
"emailAddress": "NKOCHHAR"

}, {
"employeeId": 102,
"firstName": "Lex",
"lastName": "De Haan",
"emailAddress": "LDEHAAN"

}
]

}
• Generates a JSON Array from the results of a

nested sub-query

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

JSON_OBJECTAGG: Objects from Name Value pairs

59

select JSON_OBJECTAGG(PARAMETER,VALUE)
from NLS_DATABASE_PARAMETERS {

"NLS_RDBMS_VERSION" : "12.2.0.1.0",
"NLS_NCHAR_CONV_EXCP" : "FALSE",
"NLS_LENGTH_SEMANTICS" : "BYTE",
"NLS_COMP" : "BINARY",
"NLS_DUAL_CURRENCY" : "$",
"NLS_TIMESTAMP_TZ_FORMAT" : "DD-MON-RR HH.MI.SSXFF AM TZR",
"NLS_TIME_TZ_FORMAT" : "HH.MI.SSXFF AM TZR",
"NLS_TIMESTAMP_FORMAT" : "DD-MON-RR HH.MI.SSXFF AM",
"NLS_TIME_FORMAT" : "HH.MI.SSXFF AM",
"NLS_SORT" : "BINARY",
"NLS_DATE_LANGUAGE" : "AMERICAN",
"NLS_DATE_FORMAT" : "DD-MON-RR",
"NLS_CALENDAR" : "GREGORIAN",
"NLS_NUMERIC_CHARACTERS" : ".,",
"NLS_NCHAR_CHARACTERSET" : "AL16UTF16",
"NLS_CHARACTERSET" : "AL32UTF8",
"NLS_ISO_CURRENCY" : "AMERICA",
"NLS_CURRENCY" : "$",
"NLS_TERRITORY" : "AMERICA",
"NLS_LANGUAGE" : "AMERICAN"

}

• Create a JSON OBJECT from tables
containing name/value pair data

• JSON_OBJECTAGG is an
aggregation operator
– Use Group By if the table contains data

from multiple objects
select JSON_OBJECTAGG(

NAME,VALUE
returning CLOB

)
from V$PARAMETER
group by TYPE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

PL/SQL for processing JSON

60

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

JSON and PL/SQL in Oracle Database
• New set of object types to manipulate JSON in PL/SQL
• JSON_* types provide in-memory, hierarchical representation of JSON data
• Use them to...

– Check structure, types or values of JSON data
– Transform JSON data the "smart way"
– Construct JSON data programmatically

61

Not on 12.2?
Check out APEX_JSON and PL/JSON for similar functionality.

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

PL/SQL JSON Object Types
• JSON_ELEMENT_T

– Supertype of all those below. Rarely used directly.
• JSON_OBJECT_T

– Manipulate JSON objects (set of name-value pairs)

• JSON_ARRAY_T
– Manipulate JSON arrays

• JSON_SCALAR_T
– Work with scalar values associated with a key

• JSON_KEY_LIST
– Array of key names, returned by GET_KEYS method

62

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Some JSON Object Type Basics
• Use the parse static method to create the in-memory representation of

your JSON data.
• Serialization does the opposite: converts an object representation of JSON

data into a textual representation.
– The STRINGIFY and TO_* methods

• Use TREAT to cast an instance of JSON_ELEMENT_T to a subtype.
– Most of your code will work with objects and arrays.

• Introspection methods return information about your data.
– Is it an array, is it a string? What is its size? etc.

63

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Some JSON Object Type Basics
• Use the parse static method to create the in-memory representation of

your JSON data
• Serialization does the opposite: converts an object representation of JSON

data into a textual representation
– The STRINGIFY and TO_* methods

• Use TREAT to cast an instance of JSON_ELEMENT_T to a subtype
– Most of your code will work with objects and arrays

• Introspection methods return information about your data
– Is it an array, is it a string? What is its size? etc.

64

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Introspection Methods
• JSON_ELEMENT_T (the most general type) offers a set of methods to tell

you what specific subtype you are working with
– IS_OBJECT, IS_ARRAY, IS_SCALAR, IS_NULL, etc.

• The return value of GET_SIZE depends on what it is "sizing"
– For scalar, returns 1
– For object, returns the number of top-level keys
– For array, returns the number of items

65

LiveSQL: search for "introspection"

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Error Handling and JSON Object Types
• The default behavior of JSON object type methods is to return NULL if

anything goes wrong
– Consistent with behavior of other JSON APIs already loose in the world

• But that can lead to problems
– Can "escalate" error handling to force the raising of exceptions

• On a per-object type instance basis, call the ON_ERROR method and pass it
a value of 0 through 4
– 0 = Return NULL (default), 1= Raise all errors ...

66

LiveSQL: search for "on_error "

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Working with JSON Objects: JSON_OBJECT_T
• JSON object: unordered set of name-value pairs

– The value could be an array, or another object...

• STRINGIFY: return a string representation of an object
• PUT: change value of existing key or add new one
• PUT_NULL: replace value of key with NULL (or add new)
• REMOVE: remove name-value pair from object
• RENAME_KEY: renames the key in the name-value pair

67

LiveSQL: search for "JSON_OBJECT_T"

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Working with JSON Arrays
• If you see [], you've got an array

– Arrays can nested. They can contain scalars or objects.

• STRINGIFY: return a string representation of an array
• PUT: add a new element at the specified position
• PUT_NULL: add a new element with value NULL
• REMOVE: remove specified element from array
• APPEND: append new element on end of array

68

LiveSQL: search for "JSON_ARRAY_T "

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

ORDS for serving JSON via REST APIs

69

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

What’s REST?
• REpresentation State Transfer

– Architectural style for distributed hypermedia systems
– Originally defined in Roy Fielding’s doctoral dissertation

• 6 constraints

– Most implementations don’t comply 100%

70

Uniform Interface Stateless Cacheable

Client-server Layered System Code on demand

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Client communicates intent via…
• URL paths (based on nouns, not verbs)

• HTTP methods

71

Type Example

Collection http://server.com/api/employees

Resource http://server.com/api/employees/101

Method CRUD/Database Action

POST Create/INSERT

GET Read/SELECT

PUT Update/UPDATE

DELETE Delete/DELETE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Oracle REST Data Services (ORDS)
• REST framework for Oracle Database

– Java based, mid-tier app
– Maps RESTful requests to SQL
– Returns results in JSON and CSV

72

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

ORDS release history

Version Date Description

1.0 2010 First release as Oracle APEX Listener with with support for OWA toolkit used by APEX

1.1 2011 First release with REST support for JSON, Microdata, CSV, Pagination. Also added FOP

2.0 2012 OAuth2 support, Integrated with APEX, Multi Database, SQL Developer integration

2.0.5 2013 Added PDB support

2.0.6 2014 Renamed to Oracle REST Data Services to emphasize REST commitment

2.0.8 2014 Added REST Filtering

3.0 2016 REST AutoTable, NoSQL, DB12 JSON, Bulk loading over REST

17.4 2017 REST Enabled SQL

73

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Demo:
REST APIs with ORDS

74

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

SODA for a JSON document store

75

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

How a
front-end
developer
really
feels

76

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

SODA: Simple Oracle Document Access
• A simple NoSQL-style API for Oracle

– Collection Management: Create and drop collections
– Document Management: CRUD (Create, Retrieve, Update and Delete) operations
– List and Search: (Query-by-Example) operations on collections
– Utility and Control: Bulk Insert, index management

• Developers can use Oracle without learning SQL or requiring DBA support
– Same development experience as pure-play document stores

• Available via Java, REST, and PL/SQL
– More implementations planned

77

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

SODA for REST
• APIs for working with JSON documents stored in Oracle Database 12c
• URI patterns mapped to operations on document collections
• Can be invoked from almost any programming language
• Distributed as part of Oracle REST Data Services (ORDS) 3.0+
• Stateless model, no transaction support

78

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Sample services provided by SODA for REST
GET /SODAROOT/schema List all collections in a schema

GET /SODAROOT/schema/collection Get all objects in collection

GET /SODAROOT/schema/collection/id Get specific object in collection

PUT /SODAROOT/schema/collection Create a collection if necessary

PUT /SODAROOT/schema/collection/id Update object with id

POST /SODAROOT/schema/collection Insert object into collection

POST /SODAROOT/schema/coll?action=query Find objects matching filter in body

• SODAROOT is typically one of “/ords/schema/latest/soda” or
“/ords/pdbname/schema/latest/soda

79

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Demo:
SODA for REST

80

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Want to Kick the Tires?
From the comfort of home…

81

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

LiveSQL.oracle.com
Tutorial

SQL/JSON Features in
Database Oracle 12c

82

Hand-On Lab

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Step 1: Open a browser and go to https://livesql.oracle.com

83

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Step 2: Click on View Scripts and Tutorials

84

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Step 3: Click on Tutorials in the menu in the right hand side

85

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Step 4: In the search box type JSON and hit return

86

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Step 5: Click on the tutorial SQL/JSON Features

87

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Step 6: Follow the step by step guide on the right hand side

88

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Step 7: Click Insert into Editor followed by clicking Run

89

1

2

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

There’s no escaping JSON!
• It will be the dominant data exchange format

for years to come
– And compared to SQL it's easy

• Oracle Database gives you all the tools you
need to combine the best of both worlds:
relational AND document

• Use your expertise in SQL, PL/SQL and JSON to become an
invaluable partner with your UI developers
– Help them be successful, and you will be successful

90

